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Abstract. In this article, we analyze different dimensional concepts of
complete (ortho)lattices and their tensor products. The determination of
these dimensions can be translated to certain set cover problems and the
cardinal product of the complementary underlying formal contexts. To
treat this cover problems in a unified manner, we take a more universal
approach via the general set cover problem and its product. This yields a
sufficient condition for the multiplicativity of various lattice dimensions
with respect to the tensor product of complete lattices.
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1 Motivation

The order 2-dimension of a complete lattice L := (L,≤), dim2(L), is the smallest
n such that an order embedding, that is an order preserving and reflecting map,
from L to the powerset of an n-element set P(n) exists. This can be seen as a
measure of L’s "complexity" with respect to set representations.

For two complete lattices L1 and L2 with dim2(L1) = m and dim2(L2) = n
the tensor product, L1 ⊗ L2, admits an order embedding to P(mn)1. Hence,
dim2(L1 ⊗ L2) is less or equal to dim2(L1) dim2(L2). Equality would be an
analogue to vector spaces where dim(V1 ⊗ V2) = dim(V1) dim(V2) holds. In the
case of complete lattices, this is also a question whether the "complexity" of
L1 ⊗L2 always grows in the same way as the one of P(mn) ∼= P(m) ⊗P(n) does.
But, it turns out that the tensor product is generally not multiplicative with
respect to the order 2-dimension.

In this paper we will analyze a sufficient condition when multiplicativity holds.
This will be achieved by studying a set cover problem which is equivalent to the
determination of the order 2-dimension. In Section 4 we will take a more universal
approach and present a general result about set cover problems and their product.
This will be applied to different notions of dimension in formal concept analysis
(Section 2) and dimensional concepts of tolerance spaces (Section 3). The latter
one have interpretations in graph theory, which we will elaborate on too.

1 This fact is a consequence of Theorem 2, as we will show in Section 5.
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2 Basics Of Formal Concept Analysis

In this section, we will provide the facts from formal concept analysis that we
will use in the sequel. If not mentioned otherwise, all results can be found in [7].

A formal context is a triple K = (G,M, I), where the incidence I ⊆ G×M
is a binary relation between finite sets. For A ⊆ G and B ⊆ M , we define two
derivation operators:

AI := {m ∈ M | ∀a ∈ A : (a,m) ∈ I} =
⋂

a∈A

{a}I ,

BI := {g ∈ G| ∀ b ∈ B : (g, b) ∈ I} =
⋂

b∈B

{b}I .

If AI = B and BI = A, the pair (A,B) is called a formal concept and the
cartesian product A × B is a maximal rectangle of K. The set of all formal
concepts of K is denoted by B(K) and defines the concept lattice B(K), via the
order (A1, B1) ≤ (A2, B2) :⇐⇒ A1 ⊆ A2. The complementary context is defined
as Kc = (G,M, Ic) := (G,M, (G × M) − I). Furthermore, two special formal
concepts of importance are the object concepts γ(g) := ({g}I

I , {g}I) and attribute
concepts µ(m) = ({m}I , {m}I

I). It holds that:

gIm ⇐⇒ γ(g) ≤ µ(m). (1)

For two contexts K1 = (G1,M1, I1) and K2 = (G2,M2, I2), we use notation
from [4] and define the direct product K1 ×̌K2 := (G1 ×G2,M1 ×M2, I1 ×̌ I2 ),

((g, h), (m,n)) ∈ I1 ×̌ I2 :⇐⇒ (g,m) ∈ I1 or (h, n) ∈ I2

and the cardinal product K1 ×̂K2 := (G1 ×G2,M1 ×M2, I1 ×̂ I2 ),

((g, h), (m,n)) ∈ I1 ×̂ I2 :⇐⇒ (g,m) ∈ I1 and (h, n) ∈ I2.

It follows that the direct and cardinal product fulfill De Morgan laws:

(K1 ×̌K2)c = Kc
1 ×̂Kc

2 and (K1 ×̂K2)c = Kc
1 ×̌Kc

2. (2)

For two complete lattices L1 and L2 the tensor product L1 ⊗L2 is the concept
lattice B(L1 ×̌L2), where L1 and L2 are considered as formal contexts with
respect to their order relations. The concept lattice of the direct product is
isomorphic to the tensor product of the factors concept lattices.

B(K1 ×̌K2) ∼= B(K1) ⊗ B(K2). (3)

Next, we will treat the dimension theory of formal concepts. A Ferrers rela-
tion is a relation F ⊆ G×M such that (g,m), (h, n) ∈ F implies (g, n) ∈ F or
(h,m) ∈ F . The definition states that F can be brought into a stair-shaped form
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by permuting the rows and columns. This is equivalent to B(G,M,F ) being a
chain. The length l of F is defined as l(F ) := #B(G,M,F ) − 1 and F is k-step if
k = #{ {g}F | g ∈ G}. Furthermore, it holds that the complement F c of a k-step
Ferrers relation is a Ferrers relation of length k.

Let Ferr↾(K) denote the set of all Ferrers relations contained in I and Ferr⇂(K)
the set of all Ferrers relations containing I. We define the Ferrers cover number2

and the Ferrers dimension of K:

fc(K) := min{#F | F ⊆ Ferr↾(K), I =
⋃

F ∈F
F},

fdim(K) := min{#F | F ⊆ Ferr⇂(K), I =
⋂

F ∈F
F}.

Analogously, Ferr↾k(K) denotes the set of all at most k-step Ferrers relations
contained in I and Ferr⇂k(K) the set of all Ferrers relations with length less
than k containing I. We define the the Ferrers k-cover number2 and the Ferrers
k-dimension:

fck(K) := min{#F | F ⊆ Ferr↾k(K), I =
⋃

F ∈F
F},

fdimk(K) := min{#F | F ⊆ Ferr⇂k(K), I =
⋂

F ∈F
F}.

Especially, we want to highlight fc1, the rectangle cover number3:

rc(K) := min{#F | F ⊆ B(K), I =
⋃

(A,B)∈F
A×B}.

Let AI be the adjacency matrix of the incidence relation I. In [1] it is implicitly
shown that rc(K) = rB(AI), where rB denotes the Boolean rank4.

Lastly, we will state the dimension theory of complete lattices and relate it
to the above defined dimensions of formal contexts. The order dimension of a
complete lattice L, dim(L), is the least number of chains, such that L can be order
embedded in their product. If we restrict the cardinality of these chains to be at
2 This term is introduced by us, although the concept itself is described in [7].
3 In the context of Formal Concept Analysis, this term is introduced by us. With

respect to Boolean matrices it has already been used in [10].
4 The Boolean rank, rB, of an n×m Boolean matrix C is the least integer k such that

Boolean m× k and k×n matrices with C = A ◦B exist. This definition is equivalent
to the fact that C is the sum of k rank one matrices (see [13]).
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most k, we get the k-dimension of L, denoted by dimk(L). Of special interest
will be the 2-dimension. That is because the n-fold direct product of chains of
cardinality 2 is isomorphic to the powerset lattice of the n-element set n. It holds
that fc(K) = fdim(Kc) = dim(B(Kc)), fck−1(K) = fdimk(Kc) = dimk(B(Kc))
and rB(AI) = rc(K) = fdim2(Kc) = dim2(B(Kc)).

In the next section, we will need a proposition from [6] and we will also make
use of some definitions from its proof.

Proposition 1. [6, Hilfssatz 32] There exists an order embedding from B(K)
into a complete lattice L if and only if there exist mappings α : G → L and
β : M → L with

gIm ⇐⇒ α(g) ≤ β(m).

Proof. "⇒": The required order embedding is given through φ(A,B) :=
∨

g∈A α(g).
"⇐": Define α := φ ◦ γ and β := φ ◦ µ.

3 Tolerance Spaces, Dimension And Graph Theory

A tolerance relation or simply a tolerance is a reflexive and symmetric binary
relation τ on a non-empty finite set V . The pair (V, τ) =: T is called tolerance
space and is a special case of a formal context. An introduction to tolerance
spaces together with applications can be found in [8] and [9].

For a tolerance τ on V , a non-empty subset S ⊆ V is called τ -preblock if S×S
is contained in τ . A maximal τ -preblock with respect to set inclusion is called
τ -block. In other words, this means that a τ -block S ⊆ V defines a non-enlargeable
square S × S ⊆ τ . The set of all τ -blocks is denoted by Bl(T). Analogously, the
set of all maximal squares of T is denoted by Sq(T). This set determines the
tolerance τ , that is τ =

⋃
Sq(T). But often not all squares are necessary to cover

τ . This motivates the definition of the square cover number5, sc(T), of a tolerance
space T, as the minimal number of maximal squares necessary to cover τ :

sc(T) := min{#S | S ⊆ Sq(T), τ =
⋃

S}.

Another covering problem of tolerance spaces is the block cover number6:

bc(T) := min{#B | B ⊆ Bl(T), V =
⋃

B}.

Similarly to the Ferrers cover numbers and rectangle cover number of general
formal contexts, we can relate these cover numbers of tolerance spaces to an
5 This term is introduced by us and is a logical consequence of the term "rectangle

cover number".
6 This term is introduced by us.
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intersection problem and a dimension of the complements concept lattice.

We start with the square cover number and notice that the complement
of a square is a symmetric Ferrers relation of length 1. Hence, we define the
symmetric Ferrers 2-dimension of Tc, denoted by sfdim2, as the smallest number
of symmetric Ferrers relations of length 1 whose intersection is equal to τ c.

The concept lattice7 B(Tc) was characterized in [12] as a complete ortholattice.
This is a complete bounded lattice L = (L,≤, c) with an involutory antiauto-
morphism c, such that for all x ∈ L it holds that x ∧ xc = 0 and x ∨ xc = 1. An
abstract orthogonality relation ⊥ is defined through x ⊥ y :⇐⇒ x ≤ yc. In the
special case of concept lattices the orthocomplement is given via (A,B)c := (B,A).

Definition 1. An orthoembedding, between two complete ortholattices L1 =
(L1,≤, c1) and L2 = (L2,≤, c2), is an order embedding φ : L1 → L2 which
additionally preserves orthogonality (x ⊥ y =⇒ φ(x) ⊥ φ(y)), such that there
exists an order preserving map ψ : L2 → L1 satisfying for all x ∈ L1:

1. ψ(φ(x)) = x,
2. ψ(φ(x)c2) = xc1 .

Remark 1. The map φ is a section from L1 to L2, such that φ and the dual of φ
given by

φd : L1 → L2, x 7→ (φ(xc1))c2

have ψ as a common retraction.

Fig. 1. The maps φ and φd := c2 ◦ ϕ ◦ c1, and their common retraction ψ.

L1

L2

L1

L2

φ

c2

c1

ψ

The next proposition provides an equivalent condition for the existence of an
orthoembedding from B(Tc) to a Boolean algebra (in other words a distributive
ortholattice) with the additional property that x ⊥ y ⇐⇒ x ∧ y = 0.

7 The concept lattice was treated under the name neighborhood ortholattice.
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Proposition 2. There exists an orthoembedding φ from B(Tc) into a Boolean
algebra L = (L,≤, c), with the special property that for all x, y ∈ L it holds that
x ⊥ y ⇐⇒ x ∧ y = 0, if and only if there exists a mapping α : V → L with

uτ cv ⇐⇒ α(u) ⊥ α(v).

Proof. "⇒": We define α := φ ◦ γ and use Equation 1 to conclude that:

u τ cv ⇐⇒ γ(u) ≤ µ(v) = γ(v)c

⇐⇒ γ(u) ⊥ γ(v)
=⇒ φ ◦ γ(u) ⊥ φ ◦ γ(v).

u τ cv ⇐⇒ γ(u) ≤ γ(v)c

⇐= ψ(φ ◦ γ(u)) ≤ ψ((φ ◦ γ(v))c)
⇐= φ ◦ γ(u) ≤ (φ ◦ γ(v))c

⇐⇒ φ ◦ γ(u) ⊥ φ ◦ γ(v).

"⇐": We define φ(A,B) :=
∨

a∈A α(a). It follows from Proposition 1 that φ is an
order embedding. Let (A,B) and (C,D) be formal concepts of B(Tc). We show
that (A,B) ⊥ (C,D) =⇒ φ(A,B) ⊥ φ(C,D). From the definition of φ and the
complement in B(Tc) it follows that:

(A,B) ⊥ (C,D) ⇐⇒ (A,B) ≤ (D,C) ⇐⇒
∨

a∈A

α(a) ≤
∨

d∈D

α(d), (4)

φ(A,B) ⊥ φ(C,D) ⇐⇒
∨

a∈A

α(a) ∧
∨

c∈C

α(c) = 0. (5)

In the next step, we show that 4 implies 5 by "connecting" the ends.
"(4)⇒(5)": Since, (C,D) is a formal concept it holds that α(d) ≤ α(c)c for all
d ∈ D and all c ∈ C.

(4) ⇒
∨

a∈A

α(a) ≤
∨

c∈C

α(c)c ⇒
∨

a∈A

α(a) =
∨

a∈A

α(a) ∧
∨

c∈C

α(c)c.

Finally, we take the meet with
∨

c∈C α(c) and use distributivity.
∨

a∈A

α(a) ∧
∨

c∈C

α(c) = (
∨

a∈A

α(a) ∧
∨

c∈C

α(c)c) ∧
∨

c∈C

α(c) = 0.

Furthermore, we define the desired map ψ : L → B(Tc) through ψ(x) :=
({v ∈ V | α(v) ≤ x}, {v ∈ V | x ≤ α(v)c}) and show that ψ(x) is a formal
concept of B(Tc), as well as that ψ satisfies Property 1 and 2 from Definition
1. The proof is similar to some parts of the proof from the Basic Theorem on
Concept Lattices (see [7]). Also note that ψ is order preserving.

The definition of formal concepts states that Aτc = B and Bτc = A must
hold in order for (A,B) ∈ B(Tc). We only show the second condition as the first

86 Christian Jäkel and Stefan E. Schmidt



one can be shown in the same way.

u ∈ {v ∈ V | α(v) ≤ x} ⇐⇒ α(u) ≤ x

⇐⇒ α(u) ≤ α(w)c for all w ∈ {v ∈ V | x ≤ α(v)c}
⇐⇒ u τ cw for all w ∈ {v ∈ V | x ≤ α(v)c}
⇐⇒ u ∈ {v ∈ V | x ≤ α(v)c}τc .

Next, we show that the second component from ψ(φ(A,B)) equals B. The
first component must then be equal to A, due to the fact shown above.

{v ∈ V |
∨

a∈A

α(a) ≤ α(v)c} = {v ∈ V | α(a) ≤ α(v)c for all a ∈ A}

= {v ∈ V | a τ cv for all a ∈ A}
= Aτc

= B.

Lastly, we show that the first component from ψ(φ(A,B)c) equals B. The
second component must then be equal to A, due to the fact shown above. Hence,
we can conclude that ψ(φ(A,B)c) = ψ(

∧
a∈A α(a)c) = (B,A) = (A,B)c.

{v ∈ V | α(v) ≤
∧

a∈A

α(a)c} = {v ∈ V | α(v) ≤ α(a)c for all a ∈ A}

= {v ∈ V | v τ ca for all a ∈ A}
= Aτc

= B.

Definition 2. The orthodimension of a complete ortholattice L = (L,≤, c),
denoted by dim⊥(L), is the smallest n such that there exists an orthoembedding
from L to P(n).

Theorem 1. For a tolerance space T its holds that sc(T) = dim⊥(B(Tc)).

Proof. If sc(T) = n, there exists a minimal square cover {S1 × S1, . . . , Sn × Sn}.
It follows from [5] that this is equivalent to the existence of a minimal set
representation of T, which is a map α : V → P(n), such that we have uτv ⇐⇒
α(a) ∩ α(v) ̸= ∅. From the minimal square cover, this map can be defined via:

α : v 7→ {i | v ∈ Si}.

Consequently, α provides a minimal complementary set representation for
Tc, that is u τ cv ⇐⇒ α(a) ∩ α(v) = ∅. Since it holds that α(a) ∩ α(v) = ∅ ⇐⇒
α(a) ⊆ α(v)c ⇐⇒ α(a) ⊥ α(v), Proposition 2 yields that dim⊥(B(Tc)) = n. As
all stated implications are equivalences, it follows that sc(T) = dim⊥(B(Tc)).
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We have shown that analogue to general formal contexts, in the special case
of tolerance spaces, it holds that:

sc(T) = sfdim2(Tc) = dim⊥(B(Tc)).

Next, we will treat the block cover number. For this, we will use some tools
from graph theory which we introduce in the following.

The underlying graph, GT, of a tolerance space T = (V, τ) is defined through
the same relation but with all diagonal elements removed. Analogously, to the
block and square cover number of T, we can define the vertex clique cover
number, θv(GT) = bc(T), and the edge clique cover number, θe(GT) = sc(T) (see
[3]). The vertex clique cover number is equal to the chromatic number of the
complementary graph (see [14]), χ(Gc

T)8. Here the complement is taken in the
sense of graph theory, which always yields an irreflexive relation. On the other
hand, for tolerance spaces we consider full complements as defined in Section 2.
This yields bc(T) = χ(Tc), since τ c is irreflexive and symmetric.

We saw that B(Tc) is a complete ortholattice. An orthomap between complete
ortholattices (see [12]) preserves order and orthogonality, and maps only the
bottom element of the domain lattice to the bottom element of the codomain
lattice.

Definition 3. We define the chromatic dimension, cdim(L), of a complete ortho-
lattice L = (L,≤, c), to be the minimal n such that an orthomap to the powerset
lattice P(n) exists.

The nomenclature is justified by the following proposition.

Proposition 3. For a graph G = (V,E) with an irreflexive and symmetric
relation E ⊆ V × V , it holds that χ(G) = cdim(B(G)).

Proof. The chromatic number of G is n if and only if n is minimal with the
property that there exists a graph homomorphism to Kn, the complete graph with
n vertices. In [12] it is shown that this is equivalent to the existence of an orthomap
from B(G) to P(n) ∼= B(Kn). Consequently, it holds that cdim(B(G)) = n.

The calculation of the chromatic number is a minimization problem, but not
an intersection problem. In order to define an intersection problem, we notice
that the complement Bc for a block B ∈ Bl(T) is an independent set of vertices
with respect to τ c. Hence, we can define an intersection problem with respect to
Tc. This yields the independence dimension of Tc, denoted by idim(Tc), to be
the smallest number of independent sets whose intersection is empty.

bc(T) = idim(Tc) = χ(Tc) = cdim(B(Tc)).
8 The chromatic number of a graph is the minimal n such that a graph homomorphism,

which is an edge preserving vertex map, to the complete graph with n vertices exists.
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4 Set Cover Problems And Their Product

A set cover system is a triple S := (U,X,S), with universe U , a subset X ⊆ U
and S ⊆ P(X). The cover number and isolation number of S are defined as:

c(S) := min{#S̃ | S̃ ⊆ S, X =
⋃

S̃},
i(S) := max{#X̃ | X̃ ⊆ X,∀S ∈ S : #(X̃ ∩ S) ≤ 1}.

The isolation number is the maximal cardinality of an isolated set X̃ from S,
which means that X̃ is maximal with respect to the property that any pair of its
elements is not contained in the same S ∈ S. Consequently, the isolation number
is a lower bound for the cover number.

Remark 2. Both optimization problems can be described as an integer linear
program. For this purpose, we define the representation matrix A ∈ {0, 1}X×S

of S through A(i, S) = 1 :⇔ i ∈ S.

minimize:
∑

S∈S
xS

subject to: Ax ≥ 1

xS ∈ {0, 1}.

maximize:
∑

i∈X

yi

subject to: AT y ≤ 1

yi ∈ {0, 1}.
Thus, the inequality i(S) ≤ c(S) also follows from the weak duality theorem

of optimization and the difference c(S) − i(S) is the duality gap.

A set intersection system is a triple S := (U,X,S), with universe U , a subset
X ⊆ U and S ⊆ P(U), such that X ⊆ S for all S ∈ S. The intersection number
is defined as:

int(S) := min{#S̃ | S̃ ⊆ S, X =
⋂

S̃}.

It follows that the complement of a set cover system, defined through
Sc := (U,Xc, {Sc | S ∈ S})9, is a set intersection system with c(S) = int(Sc).

The product of two set cover systems S1 = (U1, X1,S1) and S2 = (U2, X2,S2)
is defined as S1 × S2 := (U1 ×U2, X1 ×X2,S1 × S2). This definition yields to the
next theorem which is a generalization of Theorem 3.2 from [13].

Theorem 2. For the the product of set cover systems S1 and S2, it holds that:

max( i(S1) c(S2), c(S1) i(S2)) ≤ c(S1 × S2) ≤ c(S1) c(S2)
i(S1) i(S2) ≤ i(S1 × S2) ≤ min( i(S1) c(S2), c(S1) i(S2)).

9 The complements are defined with respect to U .
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Proof. We prove the first inequality and the second one follows from duality. For
the upper bound, let S̃1 and S̃2 be minimal covers from S1 and S2 respectively.
It is easy to see that S̃1 × S̃2 is a cover from S1 × S2.

For the lower bound, let S̃ be a minimal cover from S1 ×S2 and X̃1 a maximal
isolated set from S1. We define for i ∈ X̃1 the set S̃i := {(S, T ) | (S, T ) ∈ S̃, i ∈
S}. Since X̃1 is an isolated set, it follows that for different i, j ∈ X̃1, the sets S̃i

and S̃j are disjoint. A similar argument implies that every S̃i induces a cover
from S2 and hence #S̃i ≥ c(S2). These facts yield:

#S̃ ≥ #(
⋃
+

i∈X̃1

S̃i) ≥ #X̃1 c(S2) = i(S1) c(S2).

The other lower bound’s component can be deduced in the same way.

5 Dimension Of The Tensor Product Of Complete
Lattices

With Theorem 2, it is easy to provide a sufficient condition when dim, dimk, dim2,
dim⊥ and cdim are multiplicative with respect to the tensor product. Since every
complete lattice is isomorphic to a concept lattice ([7]), we can shift this problem
to the multiplicativity of the associated intersection number with respect to the
direct product (Equation 3). Furthermore, due to Equation 2, we transform this
problem to the multiplicativity of the corresponding cover number with respect
to the cardinal product. All we have to do is to define suitable set cover systems
and show that there product expresses the cardinal product of the underlying
formal contexts.

In the sense of Section 4, we define the Ferrers isolation number fi, the
k-Ferrers isolation number fik, the rectangle isolation number ri, the square
isolation number si and the block isolation number bi.

Fig. 2. This table gives an overview about the set cover problems introduced
above. Note that B(K) actually denotes a set of formal concepts, but here we
identify it with the set of all rectangles.

set cover system cover n. isolation n. intersection n. lattice dim.

(G×M, I,Ferr↾(K)) fc(K) fi(K) fdim(Kc) dim(B(Kc))

(G×M, I,Ferr↾k−1(K)) fck−1(K) fik−1(K) fdimk(Kc) dimk(B(Kc))

(G×M, I,B(K)) rc(K) ri(K) fdim2(Kc) dim2(B(Kc))

(V × V, τ,Sq(T)) sc(T) si(T) sfdim2(Tc) dim⊥(B(Tc))

(V, V,Bl(T)) bc(T) bi(T) idim(Tc) cdim(B(Tc))
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For the cardinal product of formal contexts, it holds that (A,B) ∈ B(K1 ×̂K2)
if and only if there exists (A1, B1) ∈ B(K1) and (A2, B2) ∈ B(K2), such that
A = A1×A2 and B = B1×B2 (see [11]). Only the formal concepts with A ̸= ∅ and
B ̸= ∅ are of importance for the covering problems of the cardinal product, since
they correspond to maximal rectangles. Hence, these formal concepts (A,B) can
be uniquely identified with the pair ((A1, B1), (A2, B2)). Comparing this with the
definition of the product of set cover systems, we see the desired correspondence
to the cardinal product of the respective formal contexts. The same holds for the
Ferrers relations. Also note that squares are a special case of rectangles and that
blocks are derived from maximal squares. These fact yield the following theorem.

Theorem 3. We consider the set cover problems of Figure 2 and their products.
If for one of the factors, it holds that the isolation number is equal to the cover
number, then the respective lattice dimension is multiplicative with respect to the
tensor product of the corresponding complete lattices.

Remark 3. We introduce the strong product of two simple graphs G1 = (V1, E1)
and G2 = (V2, E2), defined as G1⊠G2 := (V1×V2, Ẽ), with (u1, u2)Ẽ(v1, v2) :⇐⇒
(u1E1v1 and u2 = v2) or (u1 = v1 and u2E2v2) or (u1E1v1 and u2E2v2).

The reflexive closure of a graph G = (V,E) is defined as Gref := (V,Eref),
where Eref is the reflexive closure of the symmetric relation E. Hence, Gref is a
tolerance space. It holds that (G1 ⊠G2)ref = Gref

1 ×̂Gref
2 . Consequently, we have

that θe(G1 ⊠G2) = sc(Gref
1 ×̂Gref

2 ). In [2] the multiplicativity of the edge clique
cover number with respect to the strong product was studied and similar results
as with the square cover number of the cardinal product of tolerance spaces have
been obtained. That is why this setting would provide another example of a set
cover system and its product.

In [2] an example such that θe(G⊠G) < θe(G)θe(G) was provided for G being
the join of a 5-cycle with two isolated vertices. We did a computational experiment
to find the smallest tolerance space (in terms of the number of vertices) for which
the square isolation number is strictly smaller than the square cover number.
Thereby, we found out that the smallest tolerance space has 7 vertices and is the
reflexive closure of the graph G described above.

6 Conclusion

We showed that the three fold relationship between cover problem (Ferrers
cover number), intersection problem (Ferrers dimension) and lattice dimension
(order dimension) also applies to tolerance spaces. That is the equality of the
square cover number, the symmetric Ferrers 2-dimension and the orthodimension.
Surprisingly, this theme is also present in the case of the block cover number and
the chromatic dimension.

Additionally, we highlighted how the cover problems with respect to tolerance
spaces have a strong graph theoretic flavor, i.e., interpretations in terms of the
chromatic number or the relationship to the strong product of graphs.

Our initial question, about the multiplicativity of the lattice dimension

Cover Problems, Dimensions And The Tensor Product Of Complete Lattices 91



with respect to the tensor product, could, in all investigated examples, be
translated to a cover problem of the cardinal product of the related formal
contexts complements. This fundamental principle lead to the abstraction to the
general set cover problem, which provides a unified setting to treat these various
cover problems related to formal contexts. Especially, the question about the
multiplicativity of the dimension of the cardinal product could be dealt with in a
unified way. This in turn lead to a sufficient condition for the multiplicativity of
the lattice dimensions with respect to the tensor product of complete lattices.

The introduced isolation numbers have to our knowledge not been present
in the theory of formal concept analysis. It is an open problem to find a purely
lattice theoretical interpretation of these isolation numbers.

Acknowledgments. Finally, we want thank the anonymous referees for their
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