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Abstract. In this paper, we consider the problem of mining numerical
association rules (ARs) from a multi-relational database (MRDB). More
specifically, we examine the effectiveness of numerical ARs with inter-
val patterns (IPs) proposed by Kaytoue et al. in FCA (Formal Concept
Analysis), and show that the MinIntChange algorithm by Kaytoue et
al. can be readily extended to mine correlated interval-based ARs with
the maximal significance in terms of the χ2 measure, by incorporating
into the algorithm a pruning technique by Morishita et al. Moreover,
since the search space for computing closed IPs becomes larger as the
number of numerical attributes increases, we utilize Super CWC , an off
the shelf feature selection algorithm to reduce the number of attributes
to use. Our approach is experimentally evaluated and compared with
the conventional methods such as a discretization-based approach or an
optimization-based approach.

1 Introduction

Numerical data arise prevalently in databases, including business and scientific
databases. Handling numerical (or quantitative) data in data mining has at-
tracted much attention since the work on mining quantitative association rules
by Srikant and Agrawal [16]. Conventionally, data discretization is commonly
used to handle numerical data; for a quantitative attribute which can have con-
tinuous values, it reduces the number of values by dividing the range of the
attribute into intervals. The other approaches to handling numerical data have
also been proposed, including a statistical distribution-based approach and an
optimization-based approach (see the survey in [14]).

Kaytoue et al. [8] proposed an FCA-based approach to handling quantitative
attributes, and introduced the notions of closed interval patterns (CIPs) as well
as generators. The notion of IPs is an instance of the general framework of pattern
structures studied by Ganter and Kuznetsov [5]. Recently, some methods have
been proposed to use CIPs for mining association rules [6,13]. In particular, the
approach in [13] handles multi-relational data mining (MRDM); it uses CIPs
for mining relational quantitative association rules of the form A → C, where
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A and C are relational patterns (i.e., logical conjunctions), and they consist of
categorical attributes and quantitative ones from a given multi-relational data.
In both work, although closed interval patterns allow us to represent intervals
concisely, the numbers of generated patterns (i.e., rules) are still large, which
makes the computation expensive and imposes a significant burden on the user’s
understanding.

In this paper, we study the problem of mining optimal relational association
rules that have the maximum χ2 value between the assumption and the conclu-
sion of the rule. To find such rules, we use the original MinIntChange algorithm
by Kaytoue et al., and incorporate into it a pruning technique by Morishita et
al. [11]. Moreover, since the search space for computing closed IPs becomes larger
as the number of numerical attributes increases, we utilize Super CWC [15], an
off the shelf feature selection algorithm to reduce the number of attributes to use.
We give some experimental results, which show the effectiveness of the proposed
method.

The organization of the rest of this paper is as follows. We first summarize
some basic notations and definitions of relational association rule mining and in-
terval patterns in Sect. 2. We then explain our approach to mining quantitative
association rules from multi-relational data in Sect. 3, and show some experi-
mental results in Sect. 4. Finally, we give a summary of this work in Sect. 5.

2 Relational Association Rules with Quantitative
Attributes

2.1 Relational Pattern Mining and Interval Patterns

We use some basic notions of MRDM in [3]. To represent data and patterns, we
use a class of first-order logical formulas. An atom is an expression of the form
p(t1, . . . .tn), where p is a predicate and each ti is a term (i.e., a constant or a
variable). A substitution θ = {X1/t1, . . . , Xn/tn} is an assignment of terms to
variables. The result of applying a substitution θ to a formula (i.e., an atom or a
conjunction in this case) F is the formula Fθ, where all occurrences of variables
Vi have been simultaneously replaced by the corresponding terms ti in θ. The
set of variables occurring in a formula F is denoted by Var(F ). A pattern is
expressed as a conjunction l1 ∧ · · · ∧ ln of atoms, denoted simply by l1, . . . , ln.

A database DB is a set of ground atoms. For a pattern C, let answerset(C; DB)
be the set of substitutions θ such that Cθ is logically entailed by a database DB ,
denoted by DB |= Cθ.

In MRDM, we often specify one of the predicates as a key (e.g., [2,1]), which
determines the entities of interest and what is to be counted. The key (target)
is thus to be present in all patterns considered. Given a database DB and a
conjunction C containing a key atom key(X), the support (or frequency) of C,
denoted by supp(C), is defined to be the number of different keys that answer
C divided by the total number of keys. C is said to be frequent , if supp(C) is no
less than some user defined threshold minsup.
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customerId(c1 ). marriedTo(c1 , c2 ). income(c1 , 200 ).
customerId(c2 ). marriedTo(c2 , c1 ). income(c2 , 120 ).
customerId(c3 ). marriedTo(c3 , c4 ). income(c3 , 50 ).
. . .
age(c1 , 30 ). bigSpender(c1 ).
age(c2 , 25 ). bigSpender(c2 ).
age(c3 , 55 ).
. . .

Fig. 1. An Example Database DB with customerId as a key: adapted from [3].

An association rule we consider in this paper is an existentially quantified
implication of the form: A → C, where A (resp., C) is a conjunction of the
form: a1, . . . , am (resp., a single atom) (m ≥ 1). We call A (C) the antecedent
(conclusion) of the rule, respectively. The support of a (relational) association
rule is defined as the support of A ∧ C, while the confidence of an association
rule is defined as the support of C divided by the support of the antecedent
A. Following [7], we call a rule strong , if it satisfies both a minimum support
threshold (minsup) and a minimum confidence (minconf ).

Example 1. Consider a toy example of a multi-relational database DB in Fig. 1,
which is adapted and simplified from [3]. Predicate customerId is assumed to be a
key. Let P be a pattern of the form: customerId(X), age(X,Q1), marriedTo(X,Y ),
income(Y,Q2), whose meaning is obvious. Then, answerset(P ; DB) contains sub-
stitutions {X/c1, Q1/30, Y/c2, Q2/120} and {X/c2, Q1/25, Y/c1, Q2/200}, for ex-
ample.

The following rule is an example of association rules:

customerId(X), age(X,Q1),marriedTo(X,Y ), income(Y,Q2)→ bigSpender(X).
(1)

In the above, Q1 and Q2 are quantitative attributes, while the others are con-
sidered to be categorical ones. 2

We call a variable corresponding to a quantitative (resp., categorical) at-
tribute a quantitative (resp., categorical) variable. We also call a variable occur-
ring in a key predicate a key variable.

Relational Association Rules with Interval Patterns We use interval
patterns to specify constraints on quantitative variables in an association rule.
In the aforementioned association rule (1), for example, we consider the following
association rule with constraints consisting of interval patterns:

customerId(X), age(X,Q1),marriedTo(X,Y ), income(Y,Q2),

〈Q1, Q2〉 ∈ 〈[l1, u1], [l2, u2]〉 → bigSpender(X). (2)
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where li (ui) is a value of the domain of the attribute Qi (i = 1, 2), respectively.
Formally, let A be a conjunction such that A contains quantitative variables

Q1, . . . , Qk (k ≥ 1). Then, we call an expression c of the form “〈Q1, . . . , Qk〉 ∈
〈I1, . . . , Ik〉” an interval constraint of A, where Ii (1 ≤ i ≤ k) is an interval
pattern for Qi.

Let θ be a substitution for Var(A) and Ii = [ei, fi] for some ei and fi. Then,
DB |= (A, c)θ iff DB |= Aθ and Qiθ ∈ [ei, fi] for i = 1, . . . , k.

For simplicity, we write simply “A, I” instead ofA, 〈Q1, . . . , Qk〉 ∈ 〈I1, . . . , Ik〉,
where I = 〈I1, . . . , Ik〉 and we call I an interval pattern of A.

For a conjunction A which has no categorical variables except a key variable,
we can define a closed pattern in the same way as [8]; let S = {θ1, · · · , θn} (n ≥ 0)
be a set of substitutions for variables in A and let Q1, . . . , Qk be quantitative
variables in A. Then, we define a mapping δ(·) as follows: for a substitution θ ∈ S
such that θ ⊇ {Q1/a1, . . . , Qk/ak}, δ(θ) = 〈[a1, a1], . . . , [ak, ak]〉. Namely, the
mapping δ maps θ into an k-dimensional interval pattern 〈[a1, a1], . . . , [ak, ak]〉.
Definition 1 (closed pattern).

For a conjunction A such that A has no categorical variables except a key
variable, let S = {θ1, . . . , θn} (n ≥ 0) be a set of substitutions for variables in
A, and I an interval pattern of A. We consider the following two operators (·)2:

I2 = {θ | θ ∈ answerset(A, I; DB)},
S2 = 〈δ(θ1) u · · · u δ(θn)〉.1.
Let I and J be an interval pattern of A. Then, I and J are equivalent if

I2 = J2 and we write it by I ≡ J . We call I closed if there does not exist any
other interval pattern J such that I ≡ J and I v J . 2

2.2 Correlation Measures

Since the framework using the support/confidence only generates too many rules,
we usually use another measure to find “interesting” ones among the generated
rules. χ2-value is such a measure to find correlated rules; it is defined as a
normalized derivation of observation from expectation. Given a contingency table
in Table 1, where given m and n are both assumed to be constants, χ2 values
are determined by x and y, and we thus denote it by χ2(x, y). The following
property of χ2-value is shown by Morishita et al. [11].

Lemma 1 (Morishita et al.). [11] Let r(I0) be a rule with an interval pat-
tern I0, and let a (b, resp.) be the number of (positive) tuples that satisfy the
antecedent of r(I0). Let r(I) be a rule with an interval pattern I, and let p (q,
resp.) be the number of (positive) tuples that satisfy the antecedent of r(I) such
that 0 ≤ p ≤ a, 0 ≤ q ≤ b, q ≤ p and (p− q) ≤ (a− b). Then, we have

χ2(p, q) ≤ max{χ2(b, b), χ2(a− b, 0)}. (3)

2

1 For I1 = 〈[ai, bi]〉i∈{1,,̇k} and I2 = 〈[ei, fi]〉i∈{1,,̇k}, u is the infimum operator de-
fined by I1 u I2 = 〈[min(ai, ei),max(bi, fi)]〉i∈{1,...,k}, and I2 v I1 ⇐⇒ [ei, fi] ⊆
[ai, bi], ∀i ∈ {1, . . . , k}.
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The right-hand side of (3) gives an upper bound of χ2(p, q), and we thus
denote it by ub(r(I)).

Table 1. Contingency Table for Rule r=A→ C.

C is true C is false Sumrow

A is true sup(r)=y x− y sup(A)=x
A is false m− y n− x− (m− y) sup(¬A)= n− x
Sumcol sup(C)=m sup(¬C)= n−m n

QuantMiner [14], a GA-based algorithm, searches rules with high fitness func-
tion rules. The fitness function Fitness(·) is an evaluation measure for a rule, and
it is based on the Gain measure proposed in [4]: Gain(A→ C) = supp(A∧C)−
min conf · supp(A). The Gain value is a measure giving a trade-off between sup-
port and confidence. Using x and y in Table 1, we write Gain(A→ B) = G(x, y),
and G(x, y) is also a convex function.

3 Mining Quantitative ARs with IPs from a MRDB

Algorithm 1 shows the outline of our algorithm for mining correlated ARs with
interval patterns from a MRDB.

Given a MRDB DB , the user first specifies a rule template of the form:
A → C; it specifies conjunctions occurring in the left-hand side and the right-
hand side, and the right-hand side contains a single target atom C. The user
also specifies values of categorical variables occurring in A and C. In case the
values of the categorical variables in the rule template are not given, its possible
values will be computed in the algorithm so that each of the categorical variable
is instantiated to some value in its domain.

Next, we compute the answersets of A and A∧C, and we make the initial as-
sociation rule rinit of the form: A, I⊥ → C, where I⊥ is the minimal interval con-
straint of A. In the aforementioned rule (2), for example, I⊥ = 〈[l1, u1], [l2, u2]〉,
where li (ui) (i = 1, 2) is the minimum (maximum) value of the domain of the
attribute Qi, respectively.

If rinitis infrequent (i.e., its support supp(A∧C) is less than minsupp), then
exit. Otherwise, we compute the set R of strong rules with the best χ2 value on

DB , by calling a function MIC+p(χ2)(rinit, 0).
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Algorithm 1: Correlated AR Mining from a MRDB

input : a MRDB DB , minsupp, minconf .
output: a set R of rules rb with the best χ2 value on DB .

1 A rule template of the form: A→ C is specified by the user; // initial

step

2 Compute answersets answerset(A; DB) and answerset(A ∧ C; DB);
// mining step for categorical attributes

3 Make an initial association rule rinit of the form: A, I⊥ → C;
4 if A ∧ C is infrequent then return;
5 Initialize R ← ∅; τ ← −∞, and compute correlated ARs by calling

MIC+p(χ2)(rinit, 0) ;
6 return R

7 Function MIC+p(χ2)(a rule r(I) : A, I → C, an integer j) : a set R of
rules with the best χ2 value on Database DB is

8 A ← {µi,α | µi,α is applicable to I for some i ≥ j, α ∈ {l, r}};
9 foreach µi,α ∈ A do

10 I ′ ← µi,α(I);
11 if sup(r(I ′)) < minsup or ub(r(I ′)) < τ then continue
12 I1 ← I ′22

;
13 if I1 fails the canonicity test then continue
14 τ1 ← χ2 value of r(I1);
15 if τ1 > τ and conf (r(I ′)) ≥ minconf then τ ← τ1; R ← {r(I1)}
16 else if τ1 = τ and conf (r(I ′)) ≥ minconf then R ← R∪ {r(I1)};
17 call MIC+p(χ2)(r(I1), i);

18 end

19 end

The function MIC+p(χ2)(r(I), j) is essentially the same as the MinIntChange
algorithm by Kaytoue et al. [8]; the enumeration of closed IPs is done in the
same way as the original MinIntChange. Namely, the algorithm generates its
direct subsumers whose supports are strictly lower than its support. New interval
patterns are generated by applying minimal changes to a given interval pattern
(line 10). Since a closed interval pattern may be generated several times, we
employ the canonicity test due to CloseByOne [10] (line 13).

Definition 2 (minimal change). [8]

Let I be an interval pattern of a conjunctionA, where I = 〈[a1, b1], . . . , [ak, bk]〉
for some k ≥ 1.

A right minimal change µi,r(I) (1 ≤ i ≤ k) is defined as I ′, where I ′ is I
with its i-th interval replaced by [ai, v] such that v = max{x ∈ Vi | x < bi} and
Vi is the set of values which the quantitative variable Qi will take in a given
database. A left minimal change µi,l(I) is defined dually.
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A right minimal change µi,r is applicable to I if the resulting interval [ai, v]
does not collapse, i.e., v − ai > 0. An applicable left minimal change µi,l(I) is
defined dually. 2

MIC+p(χ2) incorporates into the original MinIntChange a pruning mechanism
(line 11) based on Lemma 1 and a mechanism storing rules with currently best
χ2 value (line 15–16). We then have the following properties:

Theorem 1 (Correctness of Algorithm 1). Let minsup be a given minimum
support and minconf a given minimum confidence. Let DB be a given database.
Then,

[Soundness] All output rules in R of Algorithm 1 give the best χ2 value on
DB , and satisfy both minsup and minconf .

[Completeness] Let r(I) be an association rule of the form: A, I → C for some
interval I. Then, if r gives the best χ2 value on DB and satisfies minsup and
minconf , then Algorithm 1 outputs a rule r1 in R of the form: A, I1 → C
such that I1 = I22.

Proof. Since the soundness is rather obvious, we omit its proof.
For the completeness, we have from the assumption and the completeness of

MinIntChange that there exists a sequence s of minimal changes from the root
to I1 = (I)22 such that I1 passes the canonicity test, i.e., it is not pruned in
line 13. Furthermore, since the closure operator I ′22 (line 12) does not change
its support, the computation corresponding to s is not pranced in line 11, either.
Therefore, we have that r(I1) ∈ R. 2

We note that Algorithm 1 is generic in a sense that it works for another

correlation measure, m, by replacing MIC+p(χ2) by MIC+p(m), provided that
the correlation measure m has a property such as convexity so that it allows
us to compute an upper bound ub(r(I)) (line 11). Such correlation measures
include information gain, gini index and Gain, to mention a few.

Although the proposed pruning method makes the IP search space smaller,
the search space becomes larger, when a given database has many quantitative
attributes. To handle such cases, we utilize Super CWC [15], an off the shelf
feature selection algorithm to reduce the number of attributes to use. We will
show some experimental results in the following section.

4 Experimental Results

We show in Table 2 some datasets used in our experiments; one is from the
UCI Machine Learning 2 and the others are from the CTU Prague Relational
Learning Repository [12]3. We also show in Table 3 rule templates for those
datasets used to compute correlated association rules, where Qi (i = 1, 2) are
quantitative variables, while the other variables are categorical ones.
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Table 2. Example Databases: † from the UCI Machine Learning Repository and the
others from the CTU Prague Repository [12]. #Relations: the number of tables in the
database. #Instances: the number of rows in the target table. Size: size in MB.

Database #Relations #Instances Size (MB) Domain

Mutagenesis 3 188 0.9 Medicine
Financial 8 682 94.1 Finance
Mondial 33 454 3.3 Geography

Heart† 1 270 0.016 Medicine

Table 3. Rule Templates for the Datasets in Table 2.

Database Rule Template

Mutagenesis mol Id(X), ind 1(A,C), eLumo(X,Q1), logP(X,Q2) → active(X)
Financial loan(X), amount(X,Q1), duration(X, 60), avg salary(X,Y,Q2) → status(X,C)
Mondial country(X), continent(X,Europe), agri(X,Q1), serv(X,Q2) → christian(X)
heart id(X), sc(X,Q1),max hra(X,Q2), cp t(X,T ) → disease(X,C)

We have implemented our proposed method by using Java 8 on a PC with
an Intel Core i7 processor running at 2.30GHz, 8GB of main memory, working
under Windows 7 (64 bit). We have performed the following experiments varying
the thresholds min sup at fixed min conf = 0.6.

Effects of the Pruning Method To see the effects of the pruning method, we
present some results for the two datasets (mutagenesis and financial) in Figure 2.
The figures (left) show the numbers of strong rules generated in computing cor-
related rules for the rule templates in Table 3, where those categorical attributes
in each rule template take some values in their domains. The figures (right) show
the corresponding execution times in milliseconds.

We have observed that the pruning method based on the branch-and-bound
heuristics enables us to generate much less rules compared with the naive ap-
proach (i.e., without pruning). The execution time of both cases are also reduced
accordingly.

Effects of the Number of Quantitative Attributes Next, to see the ef-
fects of the number of quantitative variables in mining correlated rules, we
consider two more rule templates from the rule template, R2, for the Mondial
dataset in Table 3, by varying the number of quantitative variables from 2 to
4; namely, one is a rule template R3 obtained by adding industry(X,Q3) to the
antecedent of R2, while the other rule template, R4, is obtained similarly by
adding inflation(X,Q4) to the antecedent of R3.

2 http://archive.ics.uci.edu/ml/datasets/statlog+(heart).
3 https://relational.fit.cvut.cz/.
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Fig. 2. #(Generated Strong Rules) and Execution Time for Computing Correlated
Rules for the Mutagenesis (above) and the Financial (below) Dataset. Rule templates
in Table 3 are used.

The number of generated strong rules and the execution time of computing
the association rules are shown in Fig. 3. The number of different values in the
domain of each quantitative variable Qi are shown in Table 4. The numbers of
possible interval patternss made from the values of Q1, Q2, Q3 and Q4 thus could
become very large. However, the figure shows that the numbers of generated rules
using the pruning method only moderately increase. The pruning method thus
works well also in this case.

Table 4. Some Statistics of the Mondial Dataset in Table 2. #Values: # of different
values in dom(Qi) (1 ≤ i ≤ 4).

Q1 (agri.) Q2 (service) Q3 (industry) Q4 (inflation)

#Values 27 29 30 29
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Fig. 3. #(Generated Strong Rules) and Execution Time for Computing Correlated
Rules for the Mondial Dataset. N -i (resp., P -i): the naive (resp., pruning) method for
rule Ri with i quantitative attributes (i = 2, 3, 4).

The heart dataset in Table 2 contains 13 attributes; among them, 6 attributes
take numerical values. In this case, the MinIntChange algorithm generates a large
number of CIPs. In fact, we could not obtain outputs of our algorithm within a
reasonable time when applying it directly to the complete dataset. We alleviate
this problem by first choosing some of the numerical attributes from the dataset
by using Super CWC mentioned in Sect. 3, and then applying our algorithm to
this reduced dataset. Figure 4 shows the numbers of strong rules generated and
the execution time in computing correlated rules for an initial association rule.

Table 5 shows some rules with the best χ2 values obtained by our algorithm
as well as the other approaches, i.e., QuantMiner [14], an optimization-based
approach, and CAIM [9], a data discretization approach. We notice that the rule
obtained by our algorithm has the best χ2 value in this case.

Table 5. Some Obtained Rules: An Example of the Heart Dataset. The Initial As-
sociation Rule: id(X), sc(X,Q1),max hra(X,Q2), cp t(X, 4), 〈Q1, Q2〉 ∈ 〈I1, I2〉 →
disease(X, 2). minsupp = 0.1, minconf = 0.6.

Interval Patterns 〈I1, I2〉 (supp, conf ) χ2 value

Closed IP 〈[164.0, 409.0], [71.0, 177.0]〉 (0.33, 0.75) 81.7

QuantMiner 〈[234.0, 326.0], [122.0, 147.0]〉 (0.09, 0.85) 20.2

CAIM 〈[126.0, 407.0], [71.0, 195.0]〉 (0.33, 0.70) 66.0
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Fig. 4. #(Generated Strong Rules) and Execution Time for Computing Corre-
lated Rules for the Heart Dataset with Initial Association Rule: id(X), sc(X,Q1),
max hra(X,Q2), cp t(X, 4), 〈Q1, Q2〉 ∈ 〈I1, I2〉 → disease(X, 2). minsupp = 0.1,
minconf = 0.6.

5 Concluding Remarks

In this paper, we have considered the problem of mining relational association
rules, especially focusing on the use of closed interval patterns (CIPs) for find-
ing correlated rules with the best χ2 values. Since the number of mined CIPs
increases as the number of attributes and values in the domain of each attribute
increases, we have examined the effectiveness of the original MinIntChange al-
gorithm [8] with the pruning technique by Morishita et al. on the problem. We
have also examined the effectiveness of the use of a feature selection algorithm,
Super CWC , to reduce the search space of IPs.

Most of the work in the field of MRDM have handled numerical data by using
data discretization. To the best of our knowledge, there has been no approach
which uses closed interval patterns for mining correlated association rules in
multi-relational data.

For future work, we will examine another correlation measurem in MIC+p(m),
since our algorithm is generic and will work for another measure. Since the search
space for CIPs is still large in general and the computation of CIPs is costly,
we will need some method for reducing the computational time and space to a
manageable size.
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