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Abstract. In this paper, we generalize the classical duplication of in-
tervals in lattices. Namely, we deal with partial duplication instead of
complete convex subsets. We characterize those subsets that guarantee
the result to still be a lattice. Moreover, we show that semi-distributive
and extremal lattices can be encompassed by such construction where
classical duplication fails.

Introduction

The aim of this paper is to give a characterization of several classes of lattices
obtained by doubling suborder (not necessary convex) in lattices. This construc-
tion generalizes the one that uses convex duplication introduced by Day [1] and
followed by several results on the characterizations and algorithmic aspects of
these classes of lattices such as: Bounded, Upper Bounded and normal classes
of lattices. These results have been obtained by Day on his own [2, 3] or with
Nation and Tschantz [4], Bertet and Caspard [5–7] and Geyer [8].

In the opposite of constructing a lattice, decomposing a lattice using prop-
erties of duplication to small lattices has been also considered in the litera-
ture. Markowsky [9, 10] has shown that extremal lattices can be factorized using
prime/coprime property which correspond to the double arrow or perspective
relation as introduced in [11]. Janssen and Nourine [12] have given a procedure
to decompose a semidistributive lattice according to a simplicial elimination
scheme. Others decomposition related to subdirect product construction and
congruence can be found in [13–15].

In this paper we give a necessary and sufficient condition for duplications that
maintain the lattice structure. We also give other properties that guarantee some
combinatorial properties of lattices such as ∧-semidistributivity and extremality.
As a by-product of our results and existing ones, we obtain characterizations of
some classes of lattices.

1 Preliminaries

In this paper, all considered lattices are finite. For classic definitions of lattices,
we refer the reader to the celebrated monograph of Birkhoff [16]. Still, we adress
some specific definitions that are of special interest for this documenr. Let (X,6)
be a lattice (denoted L) with ∨ and ∧ the usual join and meet operations. An
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element j in X is called join-irreducible in L if x = z ∨ t implies x = z or x = t.
The set of all join-irreducible elements is denoted by J(L). The set M(L) of all
meet-irreducible elements is defined dually. The height h(L) of a lattice L is the
length of the longest chain from ⊥ to > (the least and greatest elements of L).
Given an element x in X, the set ↑ (x,L) is the subset of X containing every
element y such that x 6 y. Set ↓ (x,L) is defined dually.

Given two elements x and y in any lattice L, we use relations ↙, ↗ and ↙↗
defined in [11] as follows,

x↙ y if x is minimal in L− ↓ (y,L),

x↗ y if y is maximal in L− ↑ (x,L),

x↙↗ y if x↙ y and x↗ y.

Note that whenever x ↙ y, x needs to be a join-irreducible element. Similarly,
if x↗ y, y needs to be a meet-irreducible element.

A lattice is said meet-semidistributive, if for all x, y, z ∈ L, x ∧ y = x ∧ z
implies x∧y = x∧ (y∨z). It is said semidistributive if it is meet-semidistributive
and join-semidistributive. We may use ↙↗L to denote the set of pairs (j,m) in L
such that j ↙↗ m. The subscript may be omitted when the context is clear.

2 Doubling construction

We study the possibilities of copying a part of a lattice so that it remains in
certain classes of well-known lattices.

The general framework is the following. Let L be a lattice on some set X
with partial order 6. Let C be any subset of X that will be copied. We call C ′

the copy of C (meaning there is a bijection ϕ from C to C ′). The convex closure
of C in L is the set H(C) = {y : ∃x, z ∈ C with x 6 y 6 z}. We may now
consider the partial order (X ∪C ′,4) where the relation 4 is defined as follows
for any pair (x, y) of elements of X ∪ C ′:

x 4 y if





x ∈ X, y ∈ X and x 6 y
x ∈ X −H(C), y ∈ C ′ and x 6 ϕ−1(y)

x ∈ C ′, y ∈ X and ϕ−1(x) 6 y
x ∈ C ′, y ∈ C ′ and ϕ−1(x) 6 ϕ−1(y).

Note that if x is in H(C), y is in C and x 6 y, we do not have x 4 ϕ(y). It
is routine to check that 4 defines a partial order on X ∪ C ′. We shall denote
this partial order L[C]. If C is the empty set, then this process does not alter L
(L[∅] = L). We shall distinguish two specific subsets of C, namely the minimal
elements L = {l1, l2, . . . , ln} and the maximal elements U = {u1, u2, . . . , um}.
Figure 1 depicts an example of a copy with two minimal and two maximal
elements in C.

In order to guarantee that the resulting partial order remains a lattice, we
need to enforce two properties about C. The first one says that if the join of two
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Fig. 1. Depiction of a copy with U = {11, 12} and L = {2, 3}.

copied elements is in the convex closure of C, then it must be copied. The second
says that if an element x in H(C) covers an element which is not in H(C), then
x must be copied.

∀(x, y) ∈ C2, x ∨ y ∈ H(C)⇒ x ∨ y ∈ C, (P1)

∀x ∈ H(C),∀y ∈ X −H(C), x covers y ⇒ x ∈ C. (P2)

Remark 1. When U and L are singletons, Property (P1) says that (C,6) is a
join-sublattice of L.

We shall first prove that properties (P1) and (P2) are necessary and sufficient
conditions for the resulting partial order to be a lattice.

Proposition 1. Given a lattice L = (X,6) and a subset C of X, L[C] is a
lattice if and only if (P1) and (P2) are satisfied.

Proof. We first show that (P1) and (P2) are necessary. Suppose that L[C] is a
lattice. We shall prove both properties separately.

– (P1). Let x and y be two elements of C such that their join z in L is in
H(C). There is some element u in U such that z 6 u. By hypothesis, L[C]
is a lattice, so there is a join of ϕ(x) and ϕ(y) in L[C] let us call it t′. By the
definition of 4, we have ϕ(x) 4 ϕ(u) and ϕ(y) 4 ϕ(u). This ensures that t′

is between ϕ(x) and ϕ(u). But those elements can only be in C ′ and there
must be an element t in C such that t′ = ϕ(t). This element t is then larger
than both x and y so that z 6 t and by definition of 4, z 4 t. But we also
have ϕ(x) 4 z and ϕ(y) 4 z so that t 4 z. Finally, t = z and thus the join
of x and y is in C.
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– (P2). Let x be an element of H(C) and y be an element of X−H(C) which
is covered by x in L. Since x is in H(C), there are elements l and u in L and
U such that l 6 x 6 u. In turn, ϕ(l) 4 x. We also know that y 4 x, thus
the join of ϕ(l) and y in L[C] is less than or equal to x. For a contradiction,
suppose that x is not in C. Then x covers y in L[C] so that the join of y and
ϕ(l) in L[C] must be exactly x. Now y 4 ϕ(u) and ϕ(l) 4 ϕ(u) so the join
of y and ϕ(l) must be below ϕ(u). This is a contradiction since x 64 ϕ(u).

Let us now prove that (P1) and (P2) are sufficient conditions for L[C] to be a
lattice. For this, it suffices to prove that any pair of elements have a least upper
bound. From the definition of 4, one may check that for any x in X ∪ C ′ we
have

↑ (x,L[C]) =





↑ (x,L) if x ∈ H(C)

↑ (x,L) ∪ ϕ(↑ (x,L)) if x ∈ X −H(C)

↑ (ϕ−1(x),L) ∪ ϕ(↑ (ϕ−1(x),L)) if x ∈ C ′,

where ϕ(A) denotes all elements that can be written as ϕ(a) for some a in A. In
all three cases, there exists an element a in X such that ↑ (x,L[C]) is exactly
↑ (a,L) or ↑ (a,L) ∪ ϕ(↑ (a,L)).

Now, notice that for any two subsets of X, A and B, the intersection of A
and ϕ(B) is always empty. From this and the distributivity of set operations, we
may derive that for any pair (x, y) of elements in X ∪C ′, there are two elements
a and b in X such that

↑ (x,L[C])∩ ↑ (y,L[C]) =





↑ (a,L)∩ ↑ (b,L)

or

(↑ (a,L)∩ ↑ (b,L)) ∪ ϕ(↑ (a,L)∩ ↑ (b,L)).

In the first case, ↑ (a,L)∩ ↑ (b,L) is a subset of X and since L is a lattice,
we know there is a least element. For the second case, let c be the join of a and
b in L. We distinguish three subcases.

– If c is in C, then ϕ(c) is definitely less than any element of both ↑ (a,L)∩ ↑ (b,L)
and ϕ(↑ (a,L)∩ ↑ (b,L)). Therefore, ϕ(c) is the least upper bound of a and
b.

– If c is not in H(C), then c is a least element of ↑ (a,L)∩ ↑ (b,L). Consider
any element x of ϕ(↑ (a,L)∩ ↑ (b,L)). Then there ϕ−1(x) is an element of
C which is greater than a and b. Therefore it is also bigger than c. By the
definition of 4, x is greater than c in L[C]. Element c is then the least upper
bound of a and b.

– If c is in H(C) − C, then a and b cannot be both elements of C by (P1).
Property (P2) basically tells us that for any chain from an element out of
H(C) to some element in H(C), there is an element of C. As a consequence,
there is a′ (respectively b′) in C such that a 6 a′ 6 c (respectively b 6 b′ 6 c).
But then the join of a′ and b′ must be c and since c is not in C, this leads
to a contradiction of (P1) so that this third subcase can never occur.
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Thus any pair of elements in L[C] has a least upper bound. Since there is also a
bottom element in L[C], we conclude that L[C] is a lattice. ut

As a useful side result, we get that (P1) and (P2) imply that the copy of any
join-irreducible element in L is a join-irreducible element of L[C].

Proposition 2. Given a lattice L, and a subset C satisfying, (P1) and (P2),
then for any element j in J(L) ∩ C, its copy ϕ(j) is a join-irreducible element
of L[C].

Proof. Let j be such an element and j∗ its unique predecessor in L. For a contra-
diction, suppose that ϕ(j) is not a join-irreducible element in L[C]. This implies
that j∗ is in H(C) but has not been copied. Consider two different elements a
and b covered by ϕ(j). In particular, ϕ(j) is the join of a and b in L[C]. Further-
more, a and b are less than j in L[C]. Whether they are in C ′ or in X, this means
they are also less than j∗. But j∗ is not comparable to ϕ(j) the join of a and b,
which is a contradiction since Proposition 1 ensures that L[C] is a lattice. ut

We may first notice that the copying process creates only m new and pairwise
distinct meet-irreducible elements.

Remark 2. Given a lattice L and a subset C satisfying (P1) and (P2),

M(L[C]) = M(L) ∪ {ϕ(u1), ϕ(u2), . . . , ϕ(um)}.

Join-irreducible elements can be of four types. Any join-irreducible element
of L which is not copied remains a join-irreducible element in L[C]. By Propo-
sition 2, any join-irreducible element of L which is copied has its image as a
join-irreducible element of L[C]. In addition, any element l in L becomes a
join-irreducible element in L[C]. And finally, some elements of C ′ might be join-
irreducible in L[C] even though their pre-image by ϕ is not join-irreducible in
L. This paragraph is summed up in the following remark.

Remark 3. Given a lattice L and a subset C satisfying (P1) and (P2),

J(L[C]) = (J(L)− C) ∪ ϕ(J(L) ∩ C) ∪ {l1, l2, . . . , ln} ∪R,

where R denotes the join-irreducible elements of C ′ which are not the copy of a
join-irreducible element.

3 Preserving combinatorial properties

In this paper we want to keep control on the number of join-irreducible elements
in order to guarantee that the lattice L[C] satisfies several combinatorial prop-
erties. To this end, we would like the sizes of J(L[C]) and J(L) to differ by only
one. Remark 3 ensures that |J(L[C])|−|J(L)| = |R|+n. Since n is at least 1, we
need to enforce that R is empty and L is a singleton. Having R as an empty set
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means that any join-irreducible element of L[C] in C ′ is the image of a former
join-irreducible of L in C. We thus states the additional property,

(
∀j ∈ J(L[C]) ∩ C ′, ϕ−1(j) ∈ J(L)

L = {l}

)
. (P0)

Remark 4. Given a lattice L and a subset C satisfying (P0), (P1) and (P2),

|J(L[C])| = |J(L)|+ 1.

In addition we shall consider three properties that will allow us to circum-
scribe the type of lattice that we want to obtain.

L = {⊥} (⊥)

U is a singleton, (U)

∀x ∈ C, ∀y ∈ X,ϕ(x)↙ y in L[C]⇒ x↙ y in L. (↙)

Each of these properties allows us to control some combinatorial parameter
of L[C]. Namely, (⊥) controls the height of the lattice, (U) controls the number
of its meet-irreducible elements and (↙) controls the number of pairs related
through relation ↙↗. These are formalized in the following theorem.

Theorem 1. Given L a lattice and C a subset satisfying (P0), (P1) and (P2),
we have the following implications:

(i) if (⊥), then h(L[C]) = h(L) + 1,
(ii) if (U), then |M(L[C])| = |M(L)|+ 1,

(iii) if (↙), then | ↙↗L[C] | = | ↙↗L |+ |U |.

Proof. Fact (i) is trivial and (ii) is obtained by considering Remark 2. Let us
focus on (iii). By Property (P0), we know that L is a singleton. Let l denote its
single element.

Claim 1.1. For any u in U , l↙↗ ϕ(u).

The only predecessor of l in L[C] is ϕ(l) and for any u in U , the only successor
of ϕ(u) in L[C] is u itself. Furthermore l 4 u, ϕ(l) 4 ϕ(u) and l 64 ϕ(u). This
concludes the proof of Claim 1.1.

Claim 1.2. Reciprocally, for any meet-irreducible element m of L[C], if l ↙↗ m,
then there is u in U such that m = ϕ(u).

A stronger statement is that when l ↙ m, then there is u in U such that
m = ϕ(u).

We prove the stronger statement for a later use. Let m be an element of
M(L[C]) − ϕ(U), thus m is in X. We shall prove that l ↙ m cannot occur
in L[C]. For a contradiction, suppose that l ↙ m in L[C]. This means that
ϕ(l) 4 m and by the definition of 4, we get that l 6 m in L and in turn that
ϕ(l) 4 m which is a contradiction. This concludes the proof of Claim 1.2.
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Claim 1.3. Similarily, for any join-irreducible element j of L[C] and any u in U ,
if j ↙↗ ϕ(u), then j = l.

Once again, a stronger statement is obtained when ↙↗ is replaced by ↙.

We also prove the stronger statement. Let u be some element of U and
suppose for a contradiction that ϕ(u) is in relation↙ with some join-irreducible
element j distinct from l. Then j 64 ϕ(u) and j 4 u. Thus j cannot be in C ′ (it
would be less than both u and ϕ(u) or not less than both of them). Therefore, j
is a join-irreducible element of L with a single predecessor j∗. In L[C], j has also
a single predecessor j∗ which is not in C ′. Since we assumed that j∗ 4 ϕ(u), it
cannot be in H(C) (they would be non-comparable). Since j has not been copied,
Property (P2) guarantees that j is not in H(C) either. But by the definition of
4, j must be either less than both u and ϕ(u) or not less than both of them.
This is a contradiction. This concludes the proof of Claim 1.3.

Claim 1.4. For any j in J(L) − C and m in M(L), j ↙↗ m in L if and only if
j ↙↗ m in L[C].

Let j be an element of J(L)−C then j is a join-irreducible element of L[C]
and its only predecessor in L[C] is the same as in L, say j∗. Let m be a meet-
irreducible from L. It remains a meet-irreducible element in L[C]. But its only
successor in L[C] can be the same as in L, say m∗ or its copy ϕ(m∗). In any case,
the comparability of j and m is the same in both L and L[C]. Same stands for j∗
and m. Now if the only successor of m is the same in L and L[C], j ↙↗ m in L if
and only if j ↙↗ m in L[C]. In the case where the only successor of m in L[C] is
ϕ(m∗), if j 4 ϕ(m∗), we also have j 6 m∗. Reciprocally, if j 6 m∗, we only need
to prove that j is not in H(C) to conclude that j 4 ϕ(m∗). Suppose that j is in
H(C). Since m∗ is in C, there is an element u in U such that m 4 ϕ(m∗) 6 ϕ(u).
This implies that m is not in H(C) (otherwise it would not be comparable with
ϕ(m∗)) so that j 66 m. If j ↙↗ m in L, it means that j∗ 6 m thus j∗ is not in
H(C) either. In the end, since j has not been copied, Property (P2) allows us to
say that j is not in H(C). So j ↙↗ m in L if and only if j ↙↗ m in L[C], ending
the proof of Claim 1.4.

Claim 1.5. For any j in J(L) ∩ C and m in M(L), j ↙↗ m in L if and only if
ϕ(j)↙↗ m in L[C].

We still have to study the case when the join-irreducible element is a copy
of a former join-irreducible element. Let j be in J(L) ∩ C and m be a meet-
irreducible element of L. We want to prove that ϕ(j) ↙↗ m in L[C] if and only
if j ↙↗ m in L. In this case, we know that the only predecessor of ϕ(j) is some
element between ϕ(l) and ϕ(j). This element can then be written ϕ(x) for some
x in C between l and j. Thus, x 6 j∗. By the definition of 4, ϕ(j) 64 m if
and only if j 66 m. Clearly, if j∗ 6 m, we have that ϕ(x) 4 m. Conversely, if
ϕ(x) 4 m, and ϕ(j) 64 m it means that ϕ(j) ↙ m. By Property (↙), we have
that j ↙ m, thus j∗ 6 m. Let m∗ be the only successor of m in L. In L[C]
the only successor of m is either m∗ or ϕ(m∗). In the latter case, if j 6 m∗,
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ϕ(j) 4 ϕ(m∗) and reciprocally. In the former case, we also have that ϕ(j) 4 m∗
if and only if j 6 m∗. Therefore ϕ(j) ↙↗ m in L[C] if and only if j ↙↗ m in L.
This concludes the proof of Claim 1.5

Summarising the previous results, we obtain that

↙↗L[C]={(l, ϕ(u)) : u ∈ U}
∪ {(j,m) ∈ J(L)×M(L) : j ↙↗ m in L and j /∈ C}
∪ {(ϕ(j),m) ∈ C ′ ×M(L) : j ∈ J(L) ∩ C and j ↙↗ m in L}.

In terms of cardinality, we get that | ↙↗L[C] | = | ↙↗L |+ |U |. ut

We may notice that Property (↙) is actually only needed for Claim 1.5.
Indeed, if this property is not satisfied, we may have new relations between the
image of a join-irreducible element and some old meet-irreducible element (see
Figure 2).

The proof of the third implication of Theorem 1 can be adapted to prove a
fourth implication. We prove separately for an easier reading.

Theorem 2. Given L a lattice and C a subset satisfying (P0), (P1) and (P2),
we have

(↙)⇒ | ↙L[C] | = | ↙L |+ |U |

Proof. We use the same ideas as in the proof of Theorem 1.

Claim 2.6. For any u in U , l↙ ϕ(u) where L = {l}.

This a direct consequence of Claim 1.1.

Claim 2.7. For any j in J(L) − C and m in M(L), j ↙ m in L if and only if
j ↙ m in L[C].

Let j be an element of J(L)−C then j is a join-irreducible element of L[C]
and its only predecessor in L[C] is the same as in L, say j∗. Let m be a meet-
irreducible from L. It remains a meet-irreducible element in L[C]. But its only
successor in L[C] can be the same as in L, say m∗ or its copy ϕ(m∗). In any
case, the comparability of j and m is the same in both L and L[C]. Same stands
for j∗ and m since j is not copied. Then j ↙ m in L if and only if j ↙ m in
L[C], ending the proof of Claim 2.7.

Claim 2.8. For any j in J(L) ∩ C and m in M(L), j ↙ m in L if and only if
ϕ(j)↙ m in L[C].

By Property (↙), we have for any j in J(L)∩C and m in M(L), ϕ(j)↙ m
in L[C] imply j ↙ m in L.

For the converse, let j be in J(L) ∩ C and m be a meet-irreducible element
of L such that j ↙ m in L. We want to prove that ϕ(j) ↙ m in L[C]. First,
by definition of 4, ϕ(j) is incomparable to m. If j∗ /∈ H(C) then j∗ = ϕ(j)∗
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by definition of 4, and then ϕ(j) ↙ m in L[C]. Now suppose that j∗ ∈ H(C).
In this case, we know that the only predecessor ϕ(j)∗ of ϕ(j) is some element
between ϕ(l) and ϕ(j). This element can then be written ϕ(x) = ϕ(j)∗ for some
x in C between l and j. Then x 6 j∗ and thus ϕ(x) 4 m. So ϕ(j)↙ m in L[C].

Summarising the previous results (and the strong versions of Claims 1.2 and 1.3),
we obtain that

↙L[C]={(l, ϕ(u)) : u ∈ U}
∪ {(j,m) ∈ J(L)×M(L) : j ↙ m in L and j /∈ C}
∪ {(ϕ(j),m) ∈ C ′ ×M(L) : j ∈ J(L) ∩ C and j ↙ m in L}.

In terms of cardinality, we get that | ↙L[C] | = | ↙L |+ |U |. ut
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L L[C]

C = {0, 2}

Fig. 2. ϕ(2)↙ 3 in L[C] while we do not have 2↙ 3 in L.

Lattices characterizations given in the following theorem can be found in
several papers (see for example [10, 17, 18]).

Theorem 3. Let L be a finite lattice. Then L is

– meet-semidistributive if and only if | ↙↗ | = |J(L)| [18].
– semidistributive if and only if | ↙↗ | = |J(L)| = |M(L)| [18].
– meet-extremal if and only if h(L) = |M(L)| [10].
– extremal if and only if h(L) = |J(L)| = |M(L)| [10].
– distributive if and only if | ↙ | = |J(L)| = |M(L)| [17].

Remark 5. Notice that a lattice that is semidistributive and extremal does not
imply that is distributive (see Figure 3). In fact it is not graded. This explain
the property (↙).

As a corollary of Theorems 1 2 and 3, we obtain a wider range of possibilities
to build specific types of lattices by preserving some combinatorial characteriza-
tions.
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Corollary 1. Given a lattice L and a subset C verifying (P0), (P1) and (P2)
the following implications are true:

1. L is distributive, (↙), (⊥) and (U) imply that L[C] is distributive.
2. L is semidistributive, (↙), and (U) imply that L[C] is semidistributive
3. L is meet-semidistributive and (↙) imply that L[C] is meet-semidistributive
4. L is extremal, (⊥) and (U) imply that L[C] is extremal
5. L is meet-extremal and (⊥) imply that L[C] is meet-extremal

One challenging problem is the characterization of contexts where their con-
cepts lattices satisfy the considered properties. For doubling convex sets, there
are nice FCA characterization and algorithms that recognize bound, lower (up-
per) bounded, semidistributive and convex lattices [5–7, 1–4, 8].
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