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Abstract. In this paper, we generalize the classical duplication of in-
tervals in lattices. Namely, we deal with partial duplication instead of
complete convex subsets. We characterize those subsets that guarantee
the result to still be a lattice. Moreover, we show that semi-distributive
and extremal lattices can be encompassed by such construction where
classical duplication fails.

Introduction

The aim of this paper is to give a characterization of several classes of lattices
obtained by doubling suborder (not necessary convex) in lattices. This construc-
tion generalizes the one that uses convex duplication introduced by Day [1] and
followed by several results on the characterizations and algorithmic aspects of
these classes of lattices such as: Bounded, Upper Bounded and normal classes
of lattices. These results have been obtained by Day on his own [2,3] or with
Nation and Tschantz [4], Bertet and Caspard [5-7] and Geyer [8].

In the opposite of constructing a lattice, decomposing a lattice using prop-
erties of duplication to small lattices has been also considered in the litera-
ture. Markowsky [9, 10] has shown that extremal lattices can be factorized using
prime/coprime property which correspond to the double arrow or perspective
relation as introduced in [11]. Janssen and Nourine [12] have given a procedure
to decompose a semidistributive lattice according to a simplicial elimination
scheme. Others decomposition related to subdirect product construction and
congruence can be found in [13-15].

In this paper we give a necessary and sufficient condition for duplications that
maintain the lattice structure. We also give other properties that guarantee some
combinatorial properties of lattices such as A-semidistributivity and extremality.
As a by-product of our results and existing ones, we obtain characterizations of
some classes of lattices.

1 Preliminaries

In this paper, all considered lattices are finite. For classic definitions of lattices,
we refer the reader to the celebrated monograph of Birkhoff [16]. Still, we adress
some specific definitions that are of special interest for this documenr. Let (X, <)
be a lattice (denoted £) with V and A the usual join and meet operations. An
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element j in X is called join-irreducible in £ if z = 2z V¢ implies z = z or z = t.
The set of all join-irreducible elements is denoted by J(L£). The set M (L) of all
meet-irreducible elements is defined dually. The height h(L) of a lattice L is the
length of the longest chain from L to T (the least and greatest elements of L).
Given an element x in X, the set 1 (z, L) is the subset of X containing every
element y such that < y. Set | (z, £) is defined dually.

Given two elements x and y in any lattice £, we use relations /, / and
defined in [11] as follows,

x / y if x is minimal in £— | (y, £),
x Sy if y is maximal in L— 1 (z, £),
x  yife/ yand x Ny.

Note that whenever x " y, = needs to be a join-irreducible element. Similarly,
if x 7y, y needs to be a meet-irreducible element.

A lattice is said meet-semidistributive, if for all x,y,z € L,x ANy = z A z
implies x Ay = x A (yV z). It is said semidistributive if it is meet-semidistributive
and join-semidistributive. We may use /', to denote the set of pairs (j,m) in £
such that j ' m. The subscript may be omitted when the context is clear.

2 Doubling construction

We study the possibilities of copying a part of a lattice so that it remains in
certain classes of well-known lattices.

The general framework is the following. Let £ be a lattice on some set X
with partial order <. Let C be any subset of X that will be copied. We call C’
the copy of C' (meaning there is a bijection ¢ from C to C”). The convex closure
of C'in L is the set H(C) = {y : 3z,z € C with z < y < z}. We may now
consider the partial order (X UC’, <) where the relation < is defined as follows
for any pair (z,y) of elements of X U C":

reX,ye X andz <y

. JreX—H(C),yeC and z < p~(y)
r<yif
reC ye X and o 1(z) <y
reCyeC and o 1 (z) < p 1(y).

Note that if 2 is in H(C), y is in C and = < y, we do not have x < ¢(y). It
is routine to check that < defines a partial order on X U C’. We shall denote
this partial order £[C]. If C is the empty set, then this process does not alter £
(L[0] = L£). We shall distinguish two specific subsets of C, namely the minimal
elements L = {ly,l3,...,l,} and the maximal elements U = {uj,us,...,un}.
Figure 1 depicts an example of a copy with two minimal and two maximal
elements in C.

In order to guarantee that the resulting partial order remains a lattice, we
need to enforce two properties about C. The first one says that if the join of two
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Fig. 1. Depiction of a copy with U = {11,12} and L = {2,3}.

H(C)

copied elements is in the convex closure of C, then it must be copied. The second
says that if an element x in H(C') covers an element which is not in H(C), then
r must be copied.

Y(z,y) € C*,avyec HC)=xVycC, (P)

Ve e H(C),Vy € X — H(C),x covers y = = € C. (P,)

Remark 1. When U and L are singletons, Property (P;) says that (C,<) is a
join-sublattice of L.

We shall first prove that properties (P;) and (P,) are necessary and sufficient
conditions for the resulting partial order to be a lattice.

Proposition 1. Given a lattice £ = (X,<) and a subset C of X, L|C] is a
lattice if and only if (P1) and (Ps) are satisfied.

Proof. We first show that (P;) and (Pz) are necessary. Suppose that L[C] is a
lattice. We shall prove both properties separately.

— (P1). Let = and y be two elements of C' such that their join z in £ is in
H(C). There is some element v in U such that z < w. By hypothesis, £[C]
is a lattice, so there is a join of ¢(z) and ¢(y) in L][C] let us call it ¢’. By the
definition of =, we have ¢(x) < p(u) and ¢(y) < @(u). This ensures that ¢/
is between p(z) and ¢(u). But those elements can only be in C’ and there
must be an element ¢ in C' such that ¢’ = ¢(¢). This element ¢ is then larger
than both = and y so that z < ¢t and by definition of %, z < t. But we also
have p(z) < z and ¢(y) < z so that ¢t < z. Finally, ¢ = z and thus the join
of z and y is in C.
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— (P2). Let z be an element of H(C') and y be an element of X — H(C') which
is covered by z in L. Since z is in H(C'), there are elements [ and u in L and
U such that | < < u. In turn, ¢(I) < x. We also know that y < x, thus
the join of ¢(I) and y in L[C] is less than or equal to z. For a contradiction,
suppose that  is not in C. Then z covers y in £[C] so that the join of y and
(1) in L[C] must be exactly z. Now y < ¢(u) and ¢(I) < ¢(u) so the join
of y and ¢(I) must be below p(u). This is a contradiction since = % p(u).

Let us now prove that (Py) and (Pz) are sufficient conditions for £[C] to be a
lattice. For this, it suffices to prove that any pair of elements have a least upper
bound. From the definition of <, one may check that for any = in X U C’ we
have

T (z, L) if z € H(C)
T (2, LICT) = 1 (2, L) U (1 (, L)) if e X — H(C)
T (e~ (x), L) Up(t (¢~ (2), L)) ifxel,

where p(A) denotes all elements that can be written as ¢(a) for some @ in A. In
all three cases, there exists an element a in X such that 1 (z, L[C]) is exactly
T (a, L) or 1 (a, L) U (T (a, £)).

Now, notice that for any two subsets of X, A and B, the intersection of A
and ¢(B) is always empty. From this and the distributivity of set operations, we
may derive that for any pair (x,y) of elements in X UC’, there are two elements
a and b in X such that

T
T

T (e, £)N1 (b, £)
T (@, L[C)N 1 (y, £[C]) = { or
(t (@, £)N 71 (b, £)) U (T (a, £)N T (b, £)).

In the first case, 1 (a,£)N T (b, L) is a subset of X and since L is a lattice,
we know there is a least element. For the second case, let ¢ be the join of a and
b in L. We distinguish three subcases.

— Ifcisin C, then p(c) is definitely less than any element of both 1 (a, £)N 1 (b, £)
and (1 (a, £)N 1 (b, L)). Therefore, ¢(c) is the least upper bound of a and
b.

— If ¢ is not in H(C), then ¢ is a least element of 1 (a, £)N 1 (b, £). Consider
any element z of o(1 (a, £)N 1 (b, £)). Then there ¢~!(z) is an element of
C which is greater than a and b. Therefore it is also bigger than c. By the
definition of <, x is greater than ¢ in £[C]. Element c is then the least upper
bound of a and b.

— If cisin H(C) — C, then a and b cannot be both elements of C' by (P).
Property (P) basically tells us that for any chain from an element out of
H(C) to some element in H(C'), there is an element of C. As a consequence,
there is @’ (respectively ') in C such that a < @’ < ¢ (respectively b < b < ¢).
But then the join of @’ and b must be ¢ and since ¢ is not in C, this leads
to a contradiction of (Pj) so that this third subcase can never occur.
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Thus any pair of elements in £[C] has a least upper bound. Since there is also a
bottom element in £L[C], we conclude that L£[C] is a lattice. O

As a useful side result, we get that (P;) and (P») imply that the copy of any
join-irreducible element in £ is a join-irreducible element of L[C].

Proposition 2. Given a lattice L, and a subset C satisfying, (P1) and (Py),
then for any element j in J(L) N C, its copy ¢(j) is a join-irreducible element

of L[C].

Proof. Let j be such an element and j, its unique predecessor in L. For a contra-
diction, suppose that ¢(j) is not a join-irreducible element in £[C]. This implies
that j. is in H(C) but has not been copied. Consider two different elements a
and b covered by ¢(j). In particular, ¢(j) is the join of a and b in £][C]. Further-
more, a and b are less than j in £[C]. Whether they are in C’ or in X, this means
they are also less than j,.. But j, is not comparable to ¢(j) the join of a and b,
which is a contradiction since Proposition 1 ensures that £[C] is a lattice. O

We may first notice that the copying process creates only m new and pairwise
distinct meet-irreducible elements.

Remark 2. Given a lattice £ and a subset C' satisfying (P;) and (Ps),

M(L[C]) = M(L) U {p(u1), p(u2), ..., o(um)}

Join-irreducible elements can be of four types. Any join-irreducible element
of £ which is not copied remains a join-irreducible element in £[C]. By Propo-
sition 2, any join-irreducible element of £ which is copied has its image as a
join-irreducible element of L£[C]. In addition, any element [ in L becomes a
join-irreducible element in £[C]. And finally, some elements of C’ might be join-
irreducible in L£[C] even though their pre-image by ¢ is not join-irreducible in
L. This paragraph is summed up in the following remark.

Remark 3. Given a lattice £ and a subset C' satisfying (P;) and (Ps),
J(L[C]) = (J(L) = C)Up(J(L)NC) ULl o, -, ln} U R,

where R denotes the join-irreducible elements of C’ which are not the copy of a
join-irreducible element.

3 Preserving combinatorial properties

In this paper we want to keep control on the number of join-irreducible elements
in order to guarantee that the lattice £[C] satisfies several combinatorial prop-
erties. To this end, we would like the sizes of J(L[C]) and J(L£) to differ by only
one. Remark 3 ensures that |J(L[C])|—|J(L)| = |R|+n. Since n is at least 1, we
need to enforce that R is empty and L is a singleton. Having R as an empty set
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means that any join-irreducible element of L£[C] in C”’ is the image of a former
join-irreducible of £ in C. We thus states the additional property,

(Vj e J(LIC)NC o1 (5) € J(E))
L={l} '

Remark 4. Given a lattice £ and a subset C' satisfying (Fp), (P1) and (Pz),

(Fo)

[J(LICD] = [J(L)] + 1.

In addition we shall consider three properties that will allow us to circum-
scribe the type of lattice that we want to obtain.

L={Ll} (L)
U is a singleton, ()
Ve e C\Vy € X, ¢(z)  yin L[C] =z yin L. (¥)

Each of these properties allows us to control some combinatorial parameter
of L[C]. Namely, (L) controls the height of the lattice, (U) controls the number
of its meet-irreducible elements and () controls the number of pairs related
through relation . These are formalized in the following theorem.

Theorem 1. Given L a lattice and C a subset satisfying (Py), (P1) and (P2),
we have the following implications:

(i) if (L), then h(L[C]) = h(L) + 1,
(it) if (U), then |[M(L]C])| = [M(L)] + 1,
(iti) if (), then | /i) | =1 |+ U]

Proof. Fact (i) is trivial and (i) is obtained by considering Remark 2. Let us
focus on (ii). By Property (Py), we know that L is a singleton. Let [ denote its
single element.

Claim 1.1. For any u in U, I /* p(u).

The only predecessor of  in L[C] is ¢(I) and for any w in U, the only successor
of p(u) in L][C] is w itself. Furthermore I < u, ¢(I) < ¢(u) and I £ @(u). This
concludes the proof of Claim 1.1.

Claim 1.2. Reciprocally, for any meet-irreducible element m of L[C], if I ,/* m,
then there is w in U such that m = ¢(u).
A stronger statement is that when [ " m, then there is v in U such that

m = o(u).

We prove the stronger statement for a later use. Let m be an element of
M(L[C]) — ¢(U), thus m is in X. We shall prove that I ,/ m cannot occur
in L[C]. For a contradiction, suppose that !  m in L£][C]. This means that
©(l) < m and by the definition of =, we get that I < m in £ and in turn that
() < m which is a contradiction. This concludes the proof of Claim 1.2.
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Claim 1.3. Similarily, for any join-irreducible element j of £[C] and any u in U,

if 5, p(u), then j =1.
Once again, a stronger statement is obtained when * is replaced by .

We also prove the stronger statement. Let u be some element of U and
suppose for a contradiction that p(u) is in relation / with some join-irreducible
element j distinct from I. Then j £ p(u) and j < u. Thus j cannot be in C” (it
would be less than both « and ¢(u) or not less than both of them). Therefore, j
is a join-irreducible element of £ with a single predecessor j.. In L[C], j has also
a single predecessor j, which is not in C’. Since we assumed that j. < o(u), it
cannot be in H(C') (they would be non-comparable). Since j has not been copied,
Property (P,) guarantees that j is not in H(C) either. But by the definition of
<, j must be either less than both u and ¢(u) or not less than both of them.
This is a contradiction. This concludes the proof of Claim 1.3.

Claim 1.4. For any j in J(£) — C and m in M (L), j ,* m in L if and only if
Jj*min L[C].

Let j be an element of J(L£) — C then j is a join-irreducible element of L[C)|
and its only predecessor in £[C] is the same as in L, say j.. Let m be a meet-
irreducible from L. It remains a meet-irreducible element in £[C]. But its only
successor in L[C] can be the same as in £, say m™* or its copy ¢(m*). In any case,
the comparability of j and m is the same in both £ and £[C]. Same stands for j,
and m. Now if the only successor of m is the same in £ and L[C], j ,/* m in L if
and only if j /* m in L[C]. In the case where the only successor of m in L][C] is
p(m*), if j < p(m*), we also have j < m*. Reciprocally, if j < m*, we only need
to prove that j is not in H(C) to conclude that j < ¢(m™*). Suppose that j is in
H(C). Since m* is in C, there is an element « in U such that m < ¢(m*) < p(u).
This implies that m is not in H(C') (otherwise it would not be comparable with
p(m*)) so that j € m. If j ,* m in L, it means that j. < m thus j, is not in
H(C) either. In the end, since j has not been copied, Property (P») allows us to
say that j is not in H(C). So j ,*m in L if and only if j ,* m in L[C], ending
the proof of Claim 1.4.

Claim 1.5. For any j in J(£)NC and m in M(L), j ,* m in £ if and only if
©(j) " m in L[C].

We still have to study the case when the join-irreducible element is a copy
of a former join-irreducible element. Let j be in J(£) N C and m be a meet-
irreducible element of £. We want to prove that ¢(j) ,* m in L]C] if and only
if j ' m in L. In this case, we know that the only predecessor of ¢(j) is some
element between (1) and ¢(j). This element can then be written ¢(x) for some
z in C between [ and j. Thus, © < j.. By the definition of %, ¢(j) £ m if
and only if j € m. Clearly, if j. < m, we have that ¢(z) < m. Conversely, if
p(z) < m, and ¢(j) £ m it means that ¢(j) " m. By Property (), we have
that j " m, thus j. < m. Let m* be the only successor of m in L. In L[C]
the only successor of m is either m* or p(m*). In the latter case, if j < m*,
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*

©(j) < p(m*) and reciprocally. In the former case, we also have that ¢(j) < m
if and only if j < m*. Therefore ¢(j) " m in L][C] if and only if j ,/* m in L.
This concludes the proof of Claim 1.5

Summarising the previous results, we obtain that

oo =1 p(u): ue U}
U{(G,m)e J(L)x M(L): 7/ min L and j ¢ C}
U{(e(j),m) e C’" x M(L): j€J(L)NC and j ,*m in L}.

In terms of cardinality, we get that | /2o | = [ /2 |+ |U]. O

We may notice that Property () is actually only needed for Claim 1.5.
Indeed, if this property is not satisfied, we may have new relations between the
image of a join-irreducible element and some old meet-irreducible element (see
Figure 2).

The proof of the third implication of Theorem 1 can be adapted to prove a
fourth implication. We prove separately for an easier reading.

Theorem 2. Given L a lattice and C a subset satisfying (Py), (P1) and (Py),
we have

) =1 cier | =1 1+ 1U|
Proof. We use the same ideas as in the proof of Theorem 1.
Claim 2.6. For any w in U, | /" p(u) where L = {l}.
This a direct consequence of Claim 1.1.

Claim 2.7. For any j in J(L£) — C and m in M (L), j " m in L if and only if
Jjv min L[C].

Let j be an element of J(L£) — C then j is a join-irreducible element of L[C)|
and its only predecessor in L[C] is the same as in £, say j.. Let m be a meet-
irreducible from L. It remains a meet-irreducible element in £[C]. But its only
successor in L[C] can be the same as in £, say m* or its copy p(m*). In any
case, the comparability of j and m is the same in both £ and £[C]. Same stands
for j. and m since j is not copied. Then j /" m in L if and only if j /" m in
L[C], ending the proof of Claim 2.7.

Claim 2.8. For any j in J(£)NC and m in M(L), j .~ m in L if and only if
¢(j) " m in L[C].

By Property (), we have for any j in J(£)NC and m in M (L), ¢(j) v m
in £[C] imply j /" m in L.

For the converse, let j be in J(£) N C and m be a meet-irreducible element
of £ such that j /" m in £. We want to prove that ¢(j)  m in L[C]. First,
by definition of <, ¢(j) is incomparable to m. If j, ¢ H(C) then j. = ¢(j)«
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by definition of =, and then ¢(j) o m in L[C]. Now suppose that j. € H(C).
In this case, we know that the only predecessor ¢(j). of ©(j) is some element
between (1) and (). This element can then be written p(x) = ¢(j). for some
z in C between [ and j. Then z < j, and thus ¢(x) < m. So ¢(j) »~ m in L[C].

Summarising the previous results (and the strong versions of Claims 1.2 and 1.3),
we obtain that

 cio={, p(u): uwe U}
U{(,m)e J(L)x M(L): j o/ min L and j ¢ C}
U{(p(j),m) e C" x M(L): j€ J(L)NC and j /" m in L}.

In terms of cardinality, we get that | /zic) | =| /¢ | +|U]. O
4

3 2 3 2

e(2)
1

0 0

©(0)
c £[C]
C={0,2}

Fig. 2. ¢(2) /3 in L[C] while we do not have 2,/ 3 in L.

Lattices characterizations given in the following theorem can be found in
several papers (see for example [10,17,18]).

Theorem 3. Let L be a finite lattice. Then L is

— meet-semidistributive if and only if | | = |J(L)| [18].

— semidistributive if and only if | /| = |J(L)| = |M(L)] [18].
— meet-extremal if and only if h(L) = |M(L)| [10].

— extremal if and only if h(L) = |J(L)| = |M(L)| [10].

— distributive if and only if | /| = |J(L)| = |M(L)| [17].

Remark 5. Notice that a lattice that is semidistributive and extremal does not
imply that is distributive (see Figure 3). In fact it is not graded. This explain
the property ().

As a corollary of Theorems 1 2 and 3, we obtain a wider range of possibilities
to build specific types of lattices by preserving some combinatorial characteriza-
tions.
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Corollary 1. Given a lattice L and a subset C verifying (Po), (P1) and (P)
the following implications are true:

i~ L~

L is distributive, (), (L) and (U) imply that L[C] is distributive.

L is semidistributive, (), and (U) imply that L[C] is semidistributive

L is meet-semidistributive and (/) imply that L[C] is meet-semidistributive
L is extremal, (L) and (U) imply that L[C] is extremal

L is meet-extremal and (L) imply that L[C] is meet-extremal

One challenging problem is the characterization of contexts where their con-

cepts lattices satisfy the considered properties. For doubling convex sets, there
are nice FCA characterization and algorithms that recognize bound, lower (up-
per) bounded, semidistributive and convex lattices [5-7, 14, 8].
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