
Reducts in Multi-Adjoint Concept Lattices
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Abstract. Removing redundant information in databases is a key issue
in Formal Concept Analysis. This paper introduces several results on the
attributes that generate the meet-irreducible elements of a multi-adjoint
concept lattice, in order to provide different properties of the reducts in
this framework. Moreover, the reducts of particular multi-adjoint concept
lattices have been computed in different examples.
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1 Introduction

Attribute reduction is an important research topic in Formal Concept Analysis
(FCA) [1, 4, 10, 15]. Reducts are the minimal subsets of attributes needed in or-
der to compute a lattice isomorphic to the original one, that is, that preserve
the whole information of the original database. Hence, the computation of these
sets is very interesting. For example, they are useful in order to obtain attribute
implications and, since the complexity to build concept lattices directly depend
on the number of attributes and objects, if a reduct can be detected before com-
puting the whole concept lattice, the complexity will significantly be decreased.

Different fuzzy extensions of FCA have been introduced [2, 3, 9, 14]. One of
the most general is the multi-adjoint concept lattice framework [11, 12]. Based
on a characterization of the meet-irreducible elements of a multi-adjoint concept
lattice, a suitable attribute reduction method has recently been presented in [6].
In this paper the notions of absolutely necessary, relatively necessary and ab-
solutely unnecessary attribute, as in Rough Set Theory (RST) [13], have been
considered in order to classify the set of attributes. This classification provides
a procedure to know whether an attribute should be considered or not. Con-
sequently, it can be used to extract reducts. In addition, when the attribute
classification verifies that the set of relatively necessary attributes is not empty
several reducts can be obtained.

Due to the relation between the given attribute classification and the meet-
irreducible elements of a concept lattice, this paper studies the attributes that
generate the meet-irreducible elements of a multi-adjoint concept lattice. From
the introduced results, different properties of the corresponding reducts have
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been presented. In addition, two examples in which the reducts of particular
multi-adjoint concept lattices have been included.

2 Preliminaries

A brief summary with the basic notions and results related to attribute classifi-
cation in the fuzzy framework of multi-adjoint concept lattices is presented.

2.1 Multi-adjoint concept lattices

First of all, we will recall the definitions of multi-adjoint frame and context where
the operators to carry out the calculus are adjoint triples [7, 8].

Definition 1. A multi-adjoint frame is a tuple (L1, L2, P,&1, . . . ,&n) where
(L1,�1) and (L2,�2) are complete lattices, (P,≤) is a poset and (&i,↙i,↖i)
is an adjoint triple with respect to L1, L2, P , for all i ∈ {1, . . . , n}.

Definition 2. Let (L1, L2, P,&1, . . . ,&n) be a multi-adjoint frame, a context is
a tuple (A,B,R, σ) such that A and B are nonempty sets (usually interpreted
as attributes and objects, respectively), R is a P -fuzzy relation R : A × B → P
and σ : A×B → {1, . . . , n} is a mapping which associates any element in A×B
with some particular adjoint triple in the frame.

In order to introduce the multi-adjoint concept lattice associated with this
frame and this context, two concept-forming operators ↑ : LB2 → LA1 and ↓ : LA1 →
LB2 are considered. These operators are defined as

g↑(a) = inf{R(a, b)↙σ(a,b) g(b) | b ∈ B} (1)

f↓(b) = inf{R(a, b)↖σ(a,b) f(a) | a ∈ A} (2)

for all g ∈ LB2 , f ∈ LA1 and a ∈ A, b ∈ B, where LB2 and LA1 denote the set
of mappings g : B → L2 and f : A → L1, respectively, which form a Galois
connection [12].

By using the concept-forming operators, a multi-adjoint concept is defined
as a pair 〈g, f〉 with g ∈ LB2 , f ∈ LA1 satisfying g↑ = f and f↓ = g. The fuzzy
subsets of objects g (resp. fuzzy subsets of attributes f) are called extensions
(resp. intensions) of the concepts.

Definition 3. The multi-adjoint concept lattice associated with a multi-adjoint
frame (L1, L2, P,&1, . . . ,&n) and a context (A,B,R, σ) given, is the set

M = {〈g, f〉 | g ∈ LB2 , f ∈ LA1 and g↑ = f, f↓ = g}

where the ordering is defined by 〈g1, f1〉 � 〈g2, f2〉 if and only if g1 �2 g2 (equiv-
alently f2 �1 f1).
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A classification of the attributes of a multi-adjoint context from a characteri-
zation of the ∧-irreducible elements of the corresponding concept lattice (M,�)
was given in [5, 6]. Before introducing this classification, the characterization the-
orem must be recalled. First and foremost, it is necessary to define the following
specific family of fuzzy subsets of attributes.

Definition 4. For each a ∈ A, the fuzzy subsets of attributes φa,x ∈ LA1 defined,
for all x ∈ L1, as

φa,x(a′) =

{
x if a′ = a
⊥1 if a′ 6= a

will be called fuzzy-attributes, where ⊥1 is the minimum element in L1. The set
of all fuzzy-attributes will be denoted as Φ = {φa,x | a ∈ A, x ∈ L1}.

Theorem 1 ([5]). The set of ∧-irreducible elements of M, MF (A), is formed
by the pairs 〈φ↓a,x, φ↓↑a,x〉 in M, with a ∈ A and x ∈ L1, such that

φ↓a,x 6=
∧
{φ↓ai,xi

| φai,xi
∈ Φ, φ↓a,x ≺2 φ

↓
ai,xi
}

and φ↓a,x 6= g>2
, where >2 is the maximum element in L2 and g>2

: B → L2 is
the fuzzy subset defined as g>2

(b) = >2, for all b ∈ B.

2.2 Attribute classification

The main results, related to the attribute classification in a multi-adjoint concept
lattice framework, were established by meet-irreducible elements of the concept
lattice and the notions of consistent set and reduct [6]. For that reason, we will
recall the following definitions.

Definition 5. A set of attributes Y ⊆ A is a consistent set of (A,B,R, σ) if
the following isomorphism holds:

M(Y,B,RY , σY×B) ∼=E M(A,B,R, σ)

This is equivalent to say that, for all 〈g, f〉 ∈ M(A,B,R, σ), there exists a
concept 〈g′, f ′〉 ∈ M(Y,B,RY , σY×B) such that g = g′.

Moreover, if M(Y \ {a}, B,RY \{a}, σY \{a}×B) 6∼=E M(A,B,R, σ), for all
a ∈ Y , then Y is called a reduct of (A,B,R, σ).

The core of (A,B,R, σ) is the intersection of all the reducts of (A,B,R, σ).

A classification of the attributes can be given from the reducts of a context.

Definition 6. Given a formal context (A,B,R, σ) and the set Y = {Y ⊆ A |
Y is a reduct} of all reducts of (A,B,R, σ). The set of attributes A can be divided
into the following three parts:

1. Absolutely necessary attributes (core attribute) Cf =
⋂
Y ∈Y Y .

2. Relatively necessary attributes Kf = (
⋃
Y ∈Y Y ) \ (

⋂
Y ∈Y Y ).

Reducts in Multi-Adjoint Concept Lattices 137



3. Absolutely unnecessary attributes If = A \ (
⋃
Y ∈Y Y ).

The attribute classification theorems introduced in [6] are based on the pre-
vious notions and are recalled below.

Theorem 2 ([6]). Given ai ∈ A, we have that ai ∈ Cf if and only if there exists
xi ∈ L1, such that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈ MF (A), satisfying that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 6=

〈φ↓aj ,xj
, φ↓↑aj ,xj

〉, for all xj ∈ L1 and aj ∈ A, with aj 6= ai.

Theorem 3 ([6]). Given ai ∈ A, we have that ai ∈ Kf if and only if ai /∈ Cf
and there exists 〈φ↓ai,xi

, φ↓↑ai,xi
〉 ∈MF (A) satisfying that Eai,xi

is not empty and
A \ Eai,xi is a consistent set, where the sets Eai,x with ai ∈ A and x ∈ L1 are
defined as:

Eai,x = {aj ∈ A \ {ai} | there exist x′ ∈ L1, satisfying φ↓ai,x = φ↓aj ,x′}

Theorem 4 ([6]). Given ai ∈ A, it is absolutely unnecessary, ai ∈ If , if and
only if, for each xi ∈ L1, we have that 〈φ↓ai,xi

, φ↓↑ai,xi
〉 6∈ MF (A), or in the case

that 〈φ↓ai,xi
, φ↓↑ai,xi

〉 ∈MF (A), then A \ Eai,xi
is not a consistent set.

The classification of the set of attributes in absolutely necessary, relatively
necessary and absolutely unnecessary attributes, provided by the previous theo-
rems, will allow us to obtain reducts (minimal sets of attributes) in the following
section. Determining the reducts can entail an important reduction of the com-
putational complexity of the concept lattice.

3 Computing the reducts of a multi-adjoint concept
lattice

This section is focused on analyzing the construction process of reducts from
the attribute classification shown in the previous section. To begin with, the
attributes in the core, that is, the absolutely necessary attributes, are included
in all reducts and the unnecessary attributes must be removed.

The choice of the relatively necessary attributes is the main task in the
process, because several reducts are obtained when the set of relatively necessary
attributes is nonempty.

Hence, several issues raise, such as, how should we select the set of relatively
necessary attributes? What is the most efficient way to perform this process?
Do all the reducts have the same cardinality? How can we get a reduct with a
minimal number of attributes? This work establishes the first steps in order to
answer these questions.

Regarding a simplification in the selection of the relatively necessary at-
tributes, a subset of attributes associated with each concept will be considered.

Definition 7. Given a multi-adjoint frame (L1, L2, P,&1, . . . ,&n) and a con-
text (A,B,R, σ) with the associated concept lattice (M,≤). Let C be a concept
of (M,≤), we define the set of attributes generating C as the set:

Atg(C) = {ai ∈ A | there exists φai,x ∈ Φ such that 〈φ↓ai,x, φ↓↑ai,x〉 = C}
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Now, we will present several properties about the attributes of the context
which will be useful to build reducts in our context, together with some example
which illustrate them.

Proposition 1. If C is a meet-irreducible concept of (M,≤), then Atg(C) is a
nonempty set.

The following example was introduced in [6], in which an attribute classifi-
cation was given. Now, we will use it in order to clarify the previous result.

Example 1. Let (L,�,&G) be a multi-adjoint frame, where &G is the Gödel
conjunctor with respect to L = {0, 0.5, 1}. In this framework, the context is
(A,B,R, σ), where A = {a1, a2, a3, a4, a5}, B = {b1, b2, b3}, R : A × B → L is
given by the table in Figure 1, and σ is constant.

R b1 b2 b3

a1 1 1 0

a2 0.5 1 0

a3 0.5 1 0

a4 1 1 0.5

a5 1 1 1

C0

C1

C2

C3

Fig. 1. Relation R and Hasse diagram of Example 1.

The concept lattice of the considered framework and context are displayed in
Figure 1, from which it is easy to see that the meet-irreducible elements are C0,
C1 and C2. Now, we will show that the sets Atg(C0), Atg(C1) and Atg(C2) are
not empty. For that, the fuzzy-attributes associated with the meet-irreducible
concepts need to be obtained. Applying the concept-forming operators to the
fuzzy-attributes we have

〈φ↓a4,1.0, φ
↓↑
a4,1.0

〉 = C2

〈φ↓a1,0.5, φ
↓↑
a1,0.5

〉 = 〈φ↓a1,1.0, φ
↓↑
a1,1.0

〉 = 〈φ↓a2,0.5, φ
↓↑
a2,0.5

〉 = 〈φ↓a3,0.5, φ
↓↑
a3,0.5

〉 = C1

〈φ↓a2,1.0, φ
↓↑
a2,1.0

〉 = 〈φ↓a3,1.0, φ
↓↑
a3,1.0

〉 = C0

obtaining the association which is written in Table 1.
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MF (A) Fuzzy-attributes generating the meet-irreducible concept

C0 φa2,1, φa3,1
C1 φa1,0.5, φa1,1, φa2,0.5, φa3,0.5
C2 φa4,1

Table 1. Fuzzy-attributes generating the meet-irreducible concepts of Example 1.

From this table, the sets of attributes generating these concepts are straight-
forwardly determined:

Atg(C0) = {a2, a3}
Atg(C1) = {a1, a2, a3}
Atg(C2) = {a4}

Hence, these subsets of attributes are nonempty as Proposition 1 shows. ut

The following proposition characterizes the singleton sets of attributes gen-
erating a concept.

Proposition 2. If C is a meet-irreducible concept of (M,≤) satisfying that
card(Atg(C)) = 1, then Atg(C) ⊆ Cf .

Example 2. In the framework of Example 1, if we consider the concept C2

then we see that the hypothesis given in Proposition 2 are satisfied, that is
card(Atg(C2)) = 1, and consequently Atg(C2) = {a4} ⊆ Cf .

This can be checked from the attribute classification given from Table 1 and
the classification theorems:

If = {a1, a5}
Kf = {a2, a3}
Cf = {a4}

ut

Note that the counterpart of the previous proposition is not true, in gen-
eral. That is, we can find a ∈ Cf such that a ∈ Atg(C) and satisfying that
card(Atg(C)) ≥ 1. What we can assert is that we can always find a meet-
irreducible element C satisfying that card(Atg(C)) = 1, if the core is nonempty,
as the following proposition explains.

Proposition 3. If the attribute a ∈ Cf then there exists C ∈MF (A) such that
a ∈ Atg(C) and card(Atg(C)) = 1.

Example 3. Coming back to Example 1, we can ensure that the attribute a4
belongs to Cf and, as Proposition 3 shows, there exists a concept in MF (A),
which is C2, verifying that a4 ∈ Atg(C2) and card(Atg(C2)) = 1. ut

As a consequence of the above properties, the following corollary holds.
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Corollary 1. If C is a meet-irreducible concept of (M,≤) and Atg(C)∩Kf 6= ∅
then card(Atg(C)) ≥ 2.

Example 4. In Example 1, the concept C1 is a meet-irreducible element such
that Atg(C1) ∩Kf = {a1, a2, a3} ∩ {a2, a3} = {a2, a3} 6= ∅. As a consequence,
we have that card(Atg(C1)) = 3 ≥ 2 as Corollary 1 shows. ut

The next proposition guarantees that, if a meet-irreducible concept C is
obtained from a relatively necessary attribute, then there does not exist an
attribute in the core belonging to Atg(C).

Proposition 4. Let C be a meet-irreducible concept. Atg(C) ∩Kf 6= ∅ if and
only if Atg(C) ∩ Cf = ∅.

Example 5. Considering the meet-irreducible concept C0 of Example 1, we have
that Atg(C0) ∩ Kf = {a2, a3}. Since this intersection is nonempty, applying
Proposition 4, we obtain that Atg(C0) ∩ Cf = {a2, a3} ∩ {a4} = ∅. A similar
situation is given if we take into account C1. ut

A lower bound and a upper bound of the cardinality of the reducts in a
multi-adjoint concept lattice framework are provided.

Proposition 5. Given GK = {Atg(C) | C ∈MF (A) and Atg(C) ∩Kf 6= ∅}
and any reduct Y of the context (A,B,R, σ). Then, the following chain is always
satisfied:

card(Cf ) ≤ card(Y ) ≤ card(Cf ) + card(GK)

Example 6. From Example 1, we can ensure that either attribute a2 or a3 is
needed (the attribute a1 is absolutely unnecessary) in order to obtain the meet-
irreducible concepts C0 and C1. Hence, since a4 ∈ Cf , two reducts Y1 = {a2, a4}
and Y2 = {a3, a4} exist. Thus, only two attributes are needed in order to consider
a concept lattice isomorphic to the original one. Now, we will see that these
reducts satisfy the previous proposition.

Since the set GK is composed by the attributes generating C0 and C1, we have
that GK = {{a2, a3}, {a1, a2, a3}}. Therefore, both reducts Y1 and Y2 satisfy the
inequalities in Proposition 5:

1 = card(Cf ) ≤ card(Y1) = card(Y2) ≤ card(Cf ) + card(GK) = 3

ut

The proposition below is fundamental in order to provide a sufficient condi-
tion to ensure that all the reducts have the same cardinality.

Proposition 6. If GK = {Atg(C) | C ∈MF (A) and Atg(C) ∩Kf 6= ∅} is a
partition of Kf , each attribute in Kf generates only one meet-irreducible element
of the concept lattice.

The following result states several conditions to guarantee that all the reducts
have the same cardinality.
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Theorem 5. When the set

GK = {Atg(C) | C ∈MF (A) and Atg(C) ∩Kf 6= ∅}

is a partition of Kf , then:

(a) All the reducts Y ⊆ A have the same cardinality and, specifically, the cardi-
nality is:

card(Y ) = card(Cf ) + card(GK)

(b) The number of different reducts obtained from the multi-adjoint context is

∏

Atg(C)∈GK
card(Atg(C))

Note that the previous theorem provides a sufficient condition in order to en-
sure that the cardinality of the reducts is the same, however it is not a necessary
condition as Example 6 reveals.

4 Worked out examples

This section begins with an illustrative example of Proposition 6 and Theo-
rem 5 that computes the reducts of a particular multi-adjoint concept lattice
framework, and shows that these reducts have the same cardinality.

Example 7. Let (L1, L2, L3,�,&∗G) be a multi-adjoint frame, where L1 = [0, 1]10,
L2 = [0, 1]4 and L3 = [0, 1]5 are regular partitions of [0, 1] in 10, 4 and 5 pieces,
respectively, and &∗G is the discretization of the Gödel conjunctor defined on
L1 × L2. We consider a context (A,B,R, σ), where A = {a1, a2, a3, a4, a5, a6},
B = {b1, b2, b3}, R : A × B → L3 is given by the table shown in the left side of
Figure 2 and σ is constantly &∗G.

In order to obtain reducts, we will study the meet-irreducible elements of the
concept lattice displayed in the right side of Figure 2 and the fuzzy-attributes
associated with them. From the corresponding Hasse diagram, we can assert
that MF (A) = {C1, C8, C9, C10, C13, C14}. The fuzzy-attributes related to these
concepts are shown in Table 2.

Applying the attribute classification theorems, we obtain:

Cf = {a1, a2}
Kf = {a3, a4, a5, a6}

Once we have classified the attributes, we are going to construct all possi-
ble reducts. Clearly, the attributes a1 and a2 must be included in all reducts.
Hence, it only remains to choose the relatively necessary attributes that should
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R a1 a2 a3 a4 a5 a6

b1 0.6 0.2 0.2 0 1 0.6

b2 0.8 0.4 0.6 0.6 1 0.8

b3 0.6 0.6 0.2 0 0 0

Fig. 2. Relation R (left side) and Hasse diagram of (M,�) (right side) of Example 7.

be contained in each reduct. For that purpose, we will analyze the attributes
generating each meet-irreducible concept:

Atg(C1) = {a3, a4}
Atg(C8) = {a1}
Atg(C9) = {a5, a6}

Atg(C10) = {a1}
Atg(C13) = {a2}
Atg(C14) = {a2}

Since Atg(C1) and Atg(C9) are disjoint subsets of Kf , we can guarantee that
GK is a partition of Kf and therefore:

(1) By Proposition 6, each attribute in Kf generates only one meet-irreducible
element of the concept lattice. From Table 2, it is easy to prove that the
attributes a3 and a4 only generate the meet-irreducible concept C1. The
concept C9 is uniquely generated by a5 and a6.
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MF (A) Fuzzy-attributes generating the meet-irreducible concept

C1 φa3,0.7, φa3,0.8, φa3,0.9, φa3,1
φa4,0.7, φa4,0.8, φa4,0.9, φa4,1

C8 φa1,0.9, φa1,1
C9 φa5,0.1, φa5,0.2, φa5,0.3, φa5,0.4, φa5,0.5, φa5,0.6, φa5,0.7, φa5,0.8, φa5,0.9, φa5,1

φa6,0.1, φa6,0.2, φa6,0.3, φa6,0.4, φa6,0.5, φa6,0.6
C10 φa1,0.7, φa1,0.8
C13 φa2,0.3, φa2,0.4
C14 φa2,0.5, φa2,0.6

Table 2. Fuzzy-attributes generating the meet-irreducible concepts of Example 7.

(2) By Theorem 5, all the reducts have the same cardinality. Thus, since

GK = {Atg(C) | C ∈MF (A) and Atg(C) ∩Kf 6= ∅}
= {Atg(C1),Atg(C9)}
= {{a3, a4}, {a5, a6}}

we have that card(Y ) = card(Cf ) + card(GK) = 2 + 2 = 4, for any reduct
Y of the context. Moreover, the number of reducts that we obtain from this
context is ∏

Atg(C)∈GK
card(Atg(C)) = 2 · 2 = 4

Specifically, the whole set of reducts are listed below:

Y1 = {a1, a2, a3, a5}
Y2 = {a1, a2, a3, a6}
Y3 = {a1, a2, a4, a5}
Y4 = {a1, a2, a4, a6}

From the previous reducts, we obtain the following isomorphic concept lattices:

(M,�) ∼= (MY1 ,�) ∼= (MY2 ,�) ∼= (MY3 ,�) ∼= (MY4 ,�)

ut

Now, we will present a situation where the elements belonging to the set GK
are not a partition of Kf , and we will see that in this particular example several
reducts with different cardinality are obtained.

Example 8. Considering the same framework that in the previous example, we
fix a context (A,B,R, σ) where the set A consists of seven attributes, the set B
contains three objects and R is obtained from the relation of the previous ex-
ample with a few of changes shown in Table 3. Hence, we obtain an isomorphic
concept lattice to the one shown in Figure 2, but a different attribute classifica-
tion arises.
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Table 3. Definition of R

R a1 a2 a3 a4 a5 a6 a7

b1 0.6 0.2 0.2 1 0.6 0.2 0

b2 0.8 0.4 0.4 1 0.8 0.6 0.6

b3 0.6 0.6 0.2 0 0 0.2 0

The attributes are classified as follows:

Cf = {a1, a2}
Kf = {a4, a5, a6, a7}
If = {a3}

As a consequence, a1 and a2 must belong to all the reducts and a3 should
be removed. Analyzing the meet-irreducible elements and the fuzzy-attributes
generating them, we obtain:

Atg(C1) = {a6, a7}
Atg(C8) = {a1}
Atg(C9) = {a4, a5, a6}

Atg(C10) = {a1}
Atg(C13) = {a2}
Atg(C14) = {a2}

Now, we have to select one attribute of Atg(C1) and another one of Atg(C9)
in order to obtain the whole set of meet-irreducible concepts and compute the
reducts. However, in this case, Atg(C1) ⊆ Kf and Atg(C9) ⊆ Kf and the
intersection Atg(C1) ∩ Atg(C9) = a6 is nonempty. Therefore, the set GK =
{Atg(C1),Atg(C9)} is not a partition of Kf .

Consequently, we can obtain the following different reducts whose sizes de-
pend on the chosen attributes as we can see below:

Y1 = {a1, a2, a6}
Y2 = {a1, a2, a4, a7}
Y3 = {a1, a2, a5, a7}

ut
This example provides the idea that, in order to compute a minimal reduct,

with respect to the number of attributes, the relatively necessary attributes to
be taken into account must be the ones given in the intersection of the sets
Atg(C), with Atg(C) ∈ GK .

5 Conclusion and future work

Based on the attribute classification introduced in [6], a construction process of
the reducts of a multi-adjoint concept lattice has been shown. Several properties
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have been stated together with examples that illustrate the shown results. The
importance of the choice of the relatively necessary attributes for computing the
reducts has also been highlighted.

More properties related to reducts will be investigated in the future in order
to find the most profitable way to generate them. We are also interested in ob-
taining an algorithm that provides a reduct with a minimal number of attributes
for any multi-adjoint concept lattice framework given.
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