
Revisiting Pattern Structures for Structured
Attribute Sets

Mehwish Alam1, Aleksey Buzmakov1, Amedeo Napoli1, and
Alibek Sailanbayev2?

1LORIA (CNRS – Inria NGE – U. de Lorraine), Vandœuvre-lès-Nancy, France
2Nazarbayev University, Astana, Kazakhstan

{ mehwish.alam, aleksey.buzmakov, amedeo.napoli, } @loria.fr,
alibek.sailanbayev@nu.edu.kz

Abstract. In this paper, we revisit an original proposition on pattern
structures for structured sets of attributes. There are several reasons for
carrying out this kind of research work. The original proposition does
not give many details on the whole framework, and especially on the
possible ways of implementing the similarity operation. There exists an
alternative definition without any reference to pattern structures, and
we would like to make a parallel between two points of view. Moreover
we discuss an efficient implementation of the intersection operation in
the corresponding pattern structure. Finally, we discovered that pattern
structures for structured attribute sets are very well adapted to the clas-
sification and the analysis of RDF data. We terminate the paper by an
experimental section where it is shown that the provided implementation
of pattern structures for structured attribute sets is quite efficient.

Keywords: Formal Concept Analysis, Pattern Structures, Structured Attribute
Sets, Least Common Ancestor, Range Minimum Query.

1 Introduction

In this paper, we want to make precise and develop a section of [1] related to
pattern structures and structured sets of attributes. There are several reasons
for carrying out this kind of research work. Firstly, the the pattern structures,
the similarity operator u and the associated subsumption operator v for struc-
tured sets of attributes are based on antichains and rather briefly sketched in
the original paper. Secondly, there is an alternative and a more “qualitative”
point of view on the same subject in [2, 3] without any reference to pattern
structures, and we would like to make a parallel between these two points of
view. Finally, for classifying RDF triples in the analysis of the content of Linked
Open Data (LOD), we discovered that actually pattern structures for structured
sets of attributes are very well adapted to solve this problem [4]. Moreover, the

? This work was done during the stay of Alibek Sailanbayev at LORIA, France.

c© Sadok Ben Yahia, Jan Konecny (Eds.): CLA 2015, pp. 241–252,
ISBN 978–2–9544948–0–7, ISSN 2311–701X, Blaise Pascal University, LIMOS
laboratory, Clermont-Ferrand, 2015.

classification of RDF triples provides a very good and practical example for illus-
trating the use of such a pattern structure and helps to reconcile the two above
points of view.

Accordingly, in this paper, we will go back to the two original definitions and
show how they are related. For completing the history, it is worth mentioning
that antichains, whose intersection is the basis of the similarity operation in
the pattern structure for structured attribute sets, our paper, are studied in the
book [5]. Moreover, this book cites as an application of antichain intersection an
older paper from 1994 [6], written in French, about the decomposition of total
orderings and its application to knowledge discovery.

Then, we proceed to present a way of efficiently working with antichains and
intersection of antichains, which can be very useful, especially in case of large sets
of data. The last section details a series of experiments where it is shown that
pattern structures can be implemented with an efficient intersection operation
and that they have a generally better behavior than scaled contexts.

2 Pattern Structures for Structured Attributes

2.1 Pattern Structures

Formal Concept Analysis [7] can process only binary contexts. Pattern structures
are an extension of FCA which allow a direct processing of such kind of data.
The formalism of pattern structures was introduced in [1].

A pattern structure is a triple (G, (D,u), δ), where G is the set of objects,
(D,u) is a meet-semilattice of descriptions, and δ : G → D maps an object to
its description. In other words, a pattern structure composed of a set of objects,
a set of descriptions equipped with a similarity operation denoted by u. This
similarity operation is idempotent, commutative and associative. If (G, (D,u), δ)
is a pattern structures then the derivation operators (Galois connection) are
defined as:

A� :=
l

g∈A
δ(g) for A ⊆ G

d� := {g ∈ G|d v δ(g)} for d ∈ D

Each element in D is referred to as a pattern. The natural order on (D,u), given
by c v d ⇔ c u d = c is called the subsumption order. Now a pattern concept
can be defined as follows:

Definition 1 (Pattern Concept). A pattern concept of a pattern structure
(G, (D,u), δ) is a pair (A, d) where A ⊆ G and d ∈ D such that A� = d and
A = d�, where A is called the concept extent and d is called the concept intent.

A pattern extent corresponds to the maximal set of objects A whose descrip-
tions subsume the description d, where d is the maximal common description

242 Mehwish Alam et al.

for objects in A. The set of all pattern concepts is partially ordered w.r.t. inclu-
sion on extents, i.e., (A1, d1) ≤ (A2, d2) iff A1 ⊆ A2 (or, equivalently, d2 v d1),
making a lattice, called pattern lattice.

2.2 Two original propositions on structured attribute sets

We briefly recall two original propositions supporting the present study. The first
work is firstly published by Carpineto & Romano in [2] and then developed in
[3]. The second work is related to the definition of pattern structures by Ganter
& Kuznetsov in [1].

In [2, 3], the authors consider a formal context (G,M, I) and an extended set
of attributes M∗ ⊃M where attributes are organized within a subsumption hi-
erarchy according to a partial ordering denoted by ≤M∗ . The following condition
should be satisfied:
∀g ∈ G,m1 ∈M,m2 ∈M∗ : [(g,m1) ∈ I,m1 ≤M∗ m2] =⇒ (g,m2) ∈ I
The subsumption hierarchy can be either a tree or an acyclic graph with a

unique maximal element, as this is the case of attributes lying in a thesaurus for
example. Then the building of a concept lattice from such a context can be done
in two main ways. A first is to use a scaling and to complete the description of
an object with all attributes implied by the original attributes. We discuss this
scaling operation in detail later. The problem would be the space necessary to
store the scaled context, especially in case of big data. A second way is to use
an “extended intersection operation” between sets of attributes which is defined
as follows. The intersection of two sets of attributes Y1 and Y2 is obtained by
finding for each pair (m1,m2),m1 ∈ Y1,m2 ∈ Y2, the most specific attributes in
M∗ that are more general than m1 and m2, and then retaining only the most
specific elements of the set of attributes generated in this way. Then if (X1, Y1)
and (X2, Y2) are two concepts, we have:

(X1, Y1) ≤ (X2, Y2)⇐⇒ ∀m2 ∈ Y2,∃m1 ∈ Y1,m1 ≤M∗ m2

In other words, this intersection operation corresponds to the intersection of
two antichains as this is explained in [1], where the authors define the formalism
of pattern structures and take as an instantiation structured attribute sets. More
formally, it is assumed that the attribute set (M,≤M) is finite and partially
ordered, and that all attribute combinations that can occur must be order ideals
(downsets) of this order. Then, any order ideal O can be described by the set
of its maximal elements; O = {x|∃y ∈ M, x ≤ y}. It should be noticed that the
order considered on the attribute sets in [1] is reversed with respect to the order
considered in [2, 3]. However, we keep the original definitions used in [1] in the
present paragraph. These maximal elements form an antichain, and conversely,
each antichain is the set of maximal elements of some order ideal. Thus, the
semilattice (D,u) of patterns in the pattern structure consists of all antichains
of the ordered attribute set. In addition, it is isomorphic to the lattice of all
order ideals of the ordered set, and thus isomorphic to the concept lattice of the
context (P, P, 6≥). For two antichains AC1 and AC2, the infimum AC1 u AC2

consists of all maximal elements of the order ideal:
{m ∈ P | ∃ac1 ∈ AC1, ∃ac2 ∈ AC2, m ≤ ac1 and m ≤ ac2}.

Revisiting Pattern Structures for Structured Attribute Sets 243

There is a “canonical representation context” (or an associated scaling oper-
ator) for the pattern structure (G, (D,u), δ) related to structured attribute sets,
which is defined by the set of “principal ideals ↓ p” as follows: (G,P, I) with
(g, p) ∈ I ⇐⇒ p ≤ δ(g).

In the next section, we make precise and discuss the pattern structure for
structured attribute sets by taking the point of view of filters and not of ideals
in agreement with the order from [2, 3], with the most general attributes above.

2.3 From Structured Attributes to Tree-shaped Attributes

An important case of structured attributes is “tree-shaped attributes”, i.e., when
the attributes are organized within a partial order corresponding to a rooted tree.
If it is the case, then the root of the tree, denoted by >, can be matched against
the description of any object, while the leaves of this tree are the most detailed
descriptions. For example, the root can correspond to the attribute ‘Animal’ and
a leaf can correspond to the attribute ‘Cat’; somewhere in between there could
be attribute ‘Mammal’.

An example of such kind of data naturally appears in the domain of semantic
web data. For example, Figure 1 gives a small part of ACCS1. This attribute tree
will be used as a running example and should be read as follows. If an object
belongs to class C1 (and probably to some other classes), then it necessarily
belongs to classes C10, C12, and >, e.g., if an object is a cat, then it is a mammal
and an animal. Accordingly, the description of an object can include several
classes, e.g., classes C1, C5 and C8. Thus, some of the tree-shaped attributes can
be omitted from the description of an object. However, they should be always
taken into account when computing the intersection between descriptions. Thus,
in order to avoid redundancy in the descriptions, we can allow only antichains of
the tree as possible elements in the set D of descriptions, and then, accordingly
compute the intersection of antichains.

An efficient way of computing intersection of antichains is explained in the
next section. Here it is important to notice that although it is a hard task to
efficiently compute intersection of antichains in an arbitrary partial order of
attributes, the intersection of antichains in a tree can help in computing this
more general intersection. Indeed, in a partial order of attributes, we can add an
artificial attribute > that can be matched against any description. Then, instead
of considering an intersection of antichains in an arbitrary poset we can take a
spanning tree of it with > taken as the root. Although we have lost some relations
between attributes, and, thus, the size of the antichains is probably larger, we
can apply the efficient intersection of antichains of tree discussed below.

2.4 On Computing Intersection of Antichains in a Tree

In this subsection we show how to efficiently solve the problem of intersection
of antichains in a tree. The problem is formalized as follows. A partial order is

1 https://www.acm.org/about/class/2012

244 Mehwish Alam et al.

>

C12

C10

C1 C2

C11

C4 C5

C6

C13

C7 C8 C9

Fig. 1: A small part from ACM Computing Classification System (ACCS).

described by the Hasse diagram corresponding to the tree. The root is denoted
by > and it is larger w.r.t. the partial order than any other element in the tree.
Given a rooted tree T and two antichains X and Y , we should find an antichain
Z such that (1) for all x ∈ X ∪ Y there is z ∈ Z such that x ≤ z and (2) no
z ∈ Z can be removed or changed to z̃ < z without violating requirement (1).

If the cardinality of antichains X and Y is 1 then this task is reduced to
the well-known problem of a Least Common Ancestor (LCA). In 1984 it was
already shown that the LCA problem can be reduced to Range Minimum Query
(RMQ) problem [8]. Later several simpler approaches were introduced for solving
the LCA problem. Here we briefly introduce the reduction of LCA to RMQ in
accordance with [9].

Reduction of LCA to RMQ. Given an array of numbers, the RMQ problem
consists in efficient answering queries on the position of the minimal value in a
given range (interval) of positions for this array. For example, given an array

Array [2 1 0 3 2]
Positions 1 2 3 4 5

where the first value is in position 1 and the last value is in position 5, the answer
to the query on the position of the minimal number in the range 2–4, i.e., the
corresponding part of array is [1;0;3], is 3 (the value of the 3rd element in the
array is 0 and it is the minimal value in this range). Accordingly, the position
of the minimal number in the range 1–2 (the part of the array is [2;1]) is 2. The
good point about this problem is that it can be solved in O(n) preprocessing
computational time and in O(1) computational time per one query [9], where n
is the number of elements in the array.

In order to introduce the reduction of LCA to RMQ we need to know what is
the depth of a tree vertex. The depth of a vertex in a rooted tree is the number
of edges in the shortest path from that vertex to the root of the tree.

We create the array of depths of the vertices in the tree that is used as an
input array for RMQ. We build this array in the following way. We traverse the
tree in depth first order (see Figure 2). Every time the algorithm considers a

Revisiting Pattern Structures for Structured Attribute Sets 245

0

1

2 3

4 5

6

7

Depth array D [0 1 2 1 2 3 2 3 2 1 0 1 2 1 0]
Corresponding vertex v0 v1 v2 v1 v3 v4 v3 v5 v3 v1 v0 v6 v7 v6 v0
Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 2: Reducing RMQ task to LCA. Arrows show the depth first order traversal.
The depth array D is accompanied by the corresponding vertices and positions.

vertex, i.e., the first visit or a return to the vertex, we should put the depth
of that vertex at the end of the depth array D. We also keep track of a vertex
corresponding to each depth in D. The depth array D has 2|T |−1 values, where
|T | is the number of vertices in the tree.

Now for any value in D we know the corresponding vertex of the tree and
any vertex of the tree is associated with several positions in D. For example, in
Figure 2 the value in the first position of D, i.e., D[1], is 0, corresponding to
the root of the tree. If we take vertex 3, then the associated values of D are on
positions 5, 7, and 9.

Given two vertices A,B ∈ T , let a be one of the positions in D corresponding
to vertex A, let b be one of the positions in D corresponding to B. Then it
can be shown that the vertex corresponding to the minimal value in D in the
range a–b is the least common ancestor of A and B. For example, to find LCA
between vertices 3 and 6 in Figure 2, one should first take two positions in D
corresponding to vertices 3 and 6. Positions 5,7, and 9 in array D correspond to
vertex 3, positions 12 and 14 correspond to vertex 6. Thus, we can query RMQ
for ranges 5–14, 7–14, 7–12, etc. The minimal value in D for all these ranges is 0
located at position 11 in D, i.e., RMQ(5, 14) = 11. Thus, the vertex corresponding
to position 11, i.e., vertex 0, is the least common ancestor for vertices 3 and 6.

Let us notice that if A ∈ T is an ancestor of B ∈ T and a and b are two
positions corresponding to the vertices A and B, then the position RMQ(a, b) in
D always corresponds to the vertex A, in most of the cases RMQ(a, b) = a. Thus
we are also able to check if a vertex of T is an ancestor of another vertex of T .

Now we know how to solve the LCA problem in O(|T |) preprocessing com-
putational time and O(1) computational time per query. Let us return to the
problem of intersecting antichains of a tree.

Antichain intersection problem. Let us first discuss the naive approach
to this problem. Given two antichains A,B ⊂ T , one can compute the set

246 Mehwish Alam et al.

D [0 1 2 3 2 3 2 1 2 3 2 3 2 1 0 1 2 3 2 3 2 3 2 1 0]
> C12 C10 C1 C10 C2 C10 C12 C11 C4 C11 C5 C11 C12 > C6 C13 C7 C13 C8 C13 C9 C13 C6 >
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Fig. 3: Depth array, the corresponding vertices, and indices for the tree in Fig-
ure 1.

{LCA(a, b) | ∀a ∈ A and ∀b ∈ B}. Then this set should be filtered for remov-
ing the comparable elements in order to get an antichain. It is easy to see that
the result is the intersection of A and B but it requires at least |A|·|B| operations.

Let us reformulate this naive approach in terms of RMQ. Given a depth array
D and two sets of indices A,B ⊆ N|D| forming an antichain, we should compute
the set Z = {RMQ(a, b) | ∀a ∈ A and ∀b ∈ B} and then remove all elements
z ∈ Z such that there is x ∈ Z \ {z} with the position RMQ(z, x) corresponding
to the same vertex as z, i.e., elements z corresponding to an ancestor of another
element from Z.

Let us consider for example the tree T given in Figure 1. Figure 3 shows the
depth array, the corresponding vertices, and indices of this array. Let us show
how to compute the intersection of A = {C1, C5, C8} and B = {C1, C7, C9}. The
expected result is {C1, C13}. First we translate the sets A and B to the indices
in array D for RMQ, i.e., A = {4, 12, 20} and B = {4, 18, 22}. Then we compute
RMQ for all pairs from A and B:

{RMQ(4, 4) = 4, RMQ(4, 18) = 15, RMQ(4, 22) = 15, · · · , RMQ(20, 18) = 19, · · · }.

Now we should remove positions corresponding to ancestors in the tree, e.g.,
RMQ(4, 15) = 15 and, hence, 15 should be removed. The result is {4, 13} repre-
senting exactly {C1, C13}.

Let us discuss two points that help us to reduce the complexity of the naive
approach. Consider the positions i ≤ l ≤ m ≤ j and k = RMQ(i, j), n = RMQ(l,m).
Then the depth in the position k is not larger than the depth in the position
n, D[k] ≤ D[n]. Hence the position RMQ(k, n) corresponds to the same vertex as
position k. For example, in Figure 3 RMQ(4, 6) = 5 and RMQ(2, 7) = 2. The value
in position 5 in the array D is D[5] = 2. It is larger than the value in position 2,
D[2] = 1. Thus, the value in position returned by RMQ for the larger range is
smaller than the value in position returned by RMQ for the smaller range.

Thus, given two sets of indices A,B ⊆ N|D| corresponding to antichains, we
can modify the naive algorithm by ordering the set A∪B and computing RMQ
only for consecutive elements from different sets, rather then for all pairs from
different sets. For example, for intersecting A = {4, 12, 20} and B = {4, 18, 22},
we join them to the set Z = {4A, 4B , 12A, 18B , 20A, 22B}. Then, we compute
RMQ only for consecutive elements from different sets, i.e., RMQ(4, 4) = 4,
RMQ(4, 12) = 8, RMQ(12, 18) = 15, RMQ(18, 20) = 19, and RMQ(20, 22) = 21. The
cardinality of A∪B is less then |A|+ |B|, hence, the number of the consecutive
elements is O(|A|+ |B|), and, thus, the number of RMQs of consecutive elements
is O(|A|+ |B|).

Revisiting Pattern Structures for Structured Attribute Sets 247

However, the set Z of RMQs of consecutive elements does not not necessarily
correspond to an antichain in T . Thus we should filter this set, in order to remove
all ancestors of another elements form Z. Accordingly, it is clear that to filter
the set Z it is enough to check only consecutive elements of Z. For example,
the intersection of A = {4, 12, 20} and B = {4, 18, 22} gives us the following
set Z = {4, 8, 15, 19, 21}. Let us now check the RMQs of consecutive elements.
RMQ(4, 8) = 8, thus, 8 is an ancestor of 4 and 8 can be removed. Since 8 is
removed, we compare RMQ(4, 15) = 15, thus, 15 should be also removed. Then we
compute RMQ(4, 19) = 15, i.e., the indices 4 and 19 are not ancestors and both
are kept. Now we compute RMQ(19, 21) = 19 and, thus, 19 should be removed
(actually positions 19 and 21 correspond to the same vertex C13 and one of
them should be removed). Thus, the result of intersecting A and B is {4, 21}
corresponding to the antichain {C1, C13}.

Since the number of elements in the set Z is O(|A|+ |B|), then overall com-
plexity of computing intersection for two antichains A,B ⊂ T of a tree T is
O(|A|+ |B|) or, taking into account that the cardinality of an antichain in a tree
is less then the number of leaves (vertices having no descendants) in this tree,
the complexity of computing intersection of two antichains is O(|Leaves(T)|).

Antichain intersection by scaling. An equivalent approach for computing
intersection of antichains is to scale the antichains to the corresponding filters.
A filter corresponding to an antichain in a poset is the set of all elements of
the poset that are larger then at least one element from the antichain. For
example, let us consider a tree-shaped poset in Figure 1. A filter corresponding
to the antichain {C1, C5, C8} is the set of all ancestors of all elements from the
antichain, i.e., it is equal to {C1, C10, C12,>, C5, C11, C8, C13, C6}.

The set-intersection of filters corresponding to the given antichains is a filter
corresponding to the antichain resulting from intersection of the antichains. How-
ever this approach has a higher complexity. Indeed, the size of a filter is O(|T |)
and, thus, the computational complexity of intersecting two antichains by means
of a scaling is O(|T |) which is harder then O(|Leaves(T)|) for intersecting an-
tichains directly. Indeed, the number of leaves in a tree can be dramatically
smaller than the number of vertices in this tree. For example, the number of
vertices in Figure 1 is 13, while the number of leaves is only 7. Thus, the direct
intersection of antichains is more efficient than the intersection by means of a
scaling procedure.

Relation to intersection of antichains in partially ordered sets of at-
tributes. As it was mentioned in the previous section, the intersection of an-
tichains in arbitrary posets can be reduced to the intersection of antichains in a
tree. However, the size of the antichain representing a description of an object
can increase. Indeed, since we have reduced a poset to a tree, some relations
have been lost, and thus the attributes that are subsumed in the poset for a
given antichain A are no more subsumed in the tree for A, and hence should be
added to A. However, the reduction is still more computationally efficient than

248 Mehwish Alam et al.

Table 1: Results of the experiments with different kind of data.
#objects is the number of objects in the corresponding dataset. #attributes is the number of nu-

merical attributes before scaling. |G| is the number of objects used for building the lattice. |T | is

the size of the attribute tree and the number of attributes in the scaled context |M |. Leaves(T) is

the number of leaves in the attribute tree. |L| is the size of the concept lattice for the corresponding

data. tT is the computational time for data represented as a set of antichains in the attribute tree.

tK is the computational time represented by a scaled context, i.e., by a set of filters in the attribute

tree; ‘*’ shows that the we are not able to build the whole lattice. tnum is the computational time

for numerical data represented by an interval pattern structure.

(a) Real data experiments.

Dataset |G| |T | Leaves(T) |L| tT tK
DBLP 5293 33207 33198 10134 45 sec 21 sec

Biomedical Data 63 1490 933 1725582 145 sec 162 sec

(b) Numerical data experiments.

Dataset #
o
b

je
ct

s

#
a
tt

ri
b

u
te

s

|G| |T | |Leaves(T)| |L| tT tK tnum

BK 96 5 35 626 10 840897 37 sec 42 sec* 19 sec
LO 16 7 16 224 26 1875 0.043 sec 0.088 sec 0.024 sec
NT 131 3 131 140 6 128624 3.6 sec 6.8 sec 3.1 sec
PO 60 16 22 1236 58 416837 49 sec 57 sec* 10.7 sec
PT 5000 49 22 4084 60 452316 50 sec 38 sec* 15 sec
PW 200 11 94 436 21 1148656 60 sec 49 sec* 48 sec
PY 74 28 36 340 53 771569 46 sec 40 sec* 21 sec
QU 2178 4 44 8212 8 783013 28 sec 30 sec* 15.4 sec
TZ 186 61 31 626 88 650041 58 sec 43 sec* 22 sec
VY 52 4 52 202 15 202666 5.9 sec 11.6 sec 3 sec

computing the intersection of antichains in a poset by means of a scaling as it
is discussed in the previous paragraph. However, for the reduction it could be
interesting to find the spanning tree with the minimal number of leaves. Unfortu-
nately, this is an NP-complete task and it thus cannot be applied for increasing
the computational efficiency [10]. We should notice here that there is some work
that solves the LCA problem for more general cases, e.g., lattices [11] or partially
ordered sets [9]. However, it is an open question whether these works can help to
efficiently compute intersection of antichains in the corresponding structures.

Revisiting Pattern Structures for Structured Attribute Sets 249

3 Experiments and Discussion

Several experiments are conducted using publicly available data on a MacBook
with a 1.3GHz Intel Core i5, 4GB of RAM running OS X Yosemite 10.3. We
have used FCAPS2 software developed in C++ for dealing with different kinds of
pattern structures. It can build a concept lattice starting from a standard formal
context or from object descriptions given as antichains of a given tree. The last
one is based on the similarity operation that is discussed above.

We performed our experiments on two datasets from different domains namely
DBLP and biomedical data. In these datasets, object descriptions are given as
subsets of attributes. A taxonomy of the attributes is already known based on
domain knowledge. We compute a concept lattice in two different ways. In the
first one, we directly compute the concept lattice from the antichains in a taxon-
omy. In the second one we scale every description to the corresponding filter of
the taxonomy. After this we do not rely on the taxonomy and process the scaled
context with standard FCA.

The first data set is DBLP, from which we extracted a subset of papers with
their keywords published in conferences in Machine Learning domain. The tax-
onomy used for classifying such kind of triples is ACM Computing Classification
System (ACCS)3.

The second data set belongs to the domain of life sciences. It contains in-
formation about drugs, their side effects (SIDER4), and their categories (Drug-
Bank5). The taxonomies related to this dataset are MedDRA 6 for side effects
and MeSH7 for drug categories.

The parameters of the datasets and the computational results are shown in
Table 1a. It can be noticed that for DBLP the context consists of 5293 objects
and 33207 attributes, in the taxonomy of the attributes we have 33198 leaves
meaning that most of attributes are mutually incomparable. It took 45 seconds
to produce a lattice having 10134 concepts directly from the descriptions given
by antichains of the taxonomy. To produce the same lattice starting from a
scaled context the program only takes 21 seconds. However, if we consider the
biomedical data, the approach based on antichains is better. Indeed, it takes
145 seconds, while the computation starting from the scaled contexts takes 162
seconds. In this case, the dataset contains 1490 attributes with 933 leaves. Thus,
the direct approach works faster if the number of leaves is significantly smaller
than the number of vertices. It is worth noticing that the size of antichains is
significantly smaller than the size of the filters, and thus our approach is more
efficient. However, when the number of leaves is comparable to the number of
vertices, our approach is slower. Although in this case our approach has the same

2 https://github.com/AlekseyBuzmakov/FCAPS
3 https://www.acm.org/about/class/2012
4 http://sideeffects.embl.de/
5 http://www.drugbank.ca/
6 http://meddra.org/
7 http://www.ncbi.nlm.nih.gov/mesh/

250 Mehwish Alam et al.

computational complexity as the scaling approach, the antichain intersection
problem requires more efforts than the set intersection.

Since the efficiency of the antichain approach is high for the trees with a
low number of leaves, we can use this method to increase efficiency of standard
FCA for special kind of contexts. In a context (G,M, I) an attribute m1 can be
considered as an ancestor of another attribute m2 if any object containing the
attribute m2 also contains the attribute m1. Accordingly we can construct an
attribute tree T and rely on it for computing intersection operation. In this case
the set of attributes M and the set of vertices of T are the same and |M | = |T |.
The second part of the experiment was based on this observation.

We used numerical data from Bilkent University in the second part of the
experiments8. It was converted to formal contexts by the standard interodinal
scaling. The scaled attributes are closely connected, i.e., there are a lot of pairs
of attributes (m1,m2) such that the set of objects described by m1 is a subset
of objects described by m2, i.e., (m1)′ ⊆ (m2)′. Thus, we can say that m1 ≤ m2.
Using this property we built attribute trees from the scaled contexts. These
trees have many more vertices than leaves, thus, the approach introduced in this
paper should be efficient. We compare our approach with the scaling approach.
Moreover, recently, it was shown that interval pattern structures (IPS) can be
efficiently used to process such kind of data [12]. Accordingly we also compared
our approach with IPS.

The results are shown in Table 1b. Compared to Table 1a it has several
additional columns. First of all, since for numerical data we typically got large
lattices, in most of the cases we considered only part of the objects. The actual
number of used objects is given in the column |G|, while the total size of the
dataset is given in the column ‘#objects’, e.g., BK dataset contained 96 objects,
while we have used only 35. In addition for every dataset we also provide the
number of the numerical attributes, e.g., BK has 5 numerical attributes. We
should notice that when we built the lattice from some datasets by standard
FCA, the lattice was so large that the memory was swapping and we stopped
the computation. It was not the case for our approach since antichains requires
less memory to store than the corresponding filters. The fact of swapping is
shown by ‘*’ next to computational time in column tK. In addition we also show
the time for IPS to process the same dataset. For example, the processing of BK
dataset took 37 seconds by our approach, took more than 42 seconds by standard
FCA and memory had started swapping, and took 19 seconds by IPS.

This experiment shows that our approach takes not only less time to com-
pute concept lattice, but also requires less memory, since there is no memory
swapping. We can also see that the computation time for IPS is smaller than
for our approach. However, IPS is only applicable for numerical data, while our
approach can be applied for all cases when attributes of a context are structured.
For example, we can deal with graph data scaled to the set of frequent subgraphs
where many such attributes are subgraphs of other attributes.

8 http://funapp.cs.bilkent.edu.tr/DataSets/

Revisiting Pattern Structures for Structured Attribute Sets 251

4 Conclusion

In this paper we recalled two approaches for dealing with structured attributes
and explained how we can compute intersection of antichains in tree-shaped
posets of attributes, an essential operation for working with structured attributes.
Our experiments showed the computational efficiency of the proposed approach.
Accordingly, we are interested in applying our approach to other kinds of data
such as graph data. Moreover, the generalization of our approach to other kinds
of posets is also of high interest.

References

1. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: ICCS.
LNCS 2120, Springer (2001) 129–142

2. Carpineto, C., Romano, G.: A lattice conceptual clustering system and its appli-
cation to browsing retrieval. Machine Learning 24(2) (1996) 95–122

3. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications.
John Wiley & Sons, Chichester, UK (2004)

4. Alam, M., Napoli, A.: Interactive exploration over RDF data using Formal Concept
Analysis. In: International Conference on Data Science and Advanced Analytics,
DSAA 2015, Paris, France, October 19 - October 21, 2015, IEEE (2015)

5. Caspard, N., Leclerc, B., Monjardet, B.: Finite Ordered Sets. Cambridge University
Press, Cambridge, UK (2012) First published in French as “Ensembles ordonnés
finis : concepts, résultats et usages”, Springer 2009.

6. Pichon, E., Lenca, P., Guillet, F., Wang, J.W.: Un algorithme de partition d’un
produit direct d’ordres totaux en un nombre fini de châınes. Mathématiques,
Informatique et Sciences Humaines 125 (1994) 5–15

7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin/Heidelberg (1999)

8. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and Related Techniques for
Geometry Problems. In: Proc. Sixt. Annu. ACM Symp. Theory Comput. STOC
’84, New York, NY, USA, ACM (1984) 135–143

9. Bender, M.A., Farach-Colton, M., Pemmasani, G., Skiena, S., Sumazin, P.: Lowest
common ancestors in trees and DAGs. J. Algorithms 57(2) (2005) 75–94

10. Salamon, G., Wiener, G.: On finding spanning trees with few leaves. Inf. Process.
Lett. 105(5) (2008) 164–169

11. Aı̈t-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient Implementation of Lattice
Operations. ACM Trans. Program. Lang. Syst. 11(1) (January 1989) 115–146

12. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression
data with pattern structures in formal concept analysis. Inf. Sci. (Ny). 181(10)
(2011) 1989 – 2001

252 Mehwish Alam et al.

