
NextClosures:
Parallel Computation of the Canonical Base

Francesco Kriegel and Daniel Borchmann

Institute of Theoretical Computer Science, TU Dresden, Germany
{francesco.kriegel,daniel.borchmann}@tu-dresden.de

Abstract. The canonical base of a formal context plays a distinguished role
in formal concept analysis. This is because it is the only minimal base so
far that can be described explicitly. For the computation of this base several
algorithms have been proposed. However, all those algorithms work sequentially,
by computing only one pseudo-intent at a time – a fact which heavily impairs
the practicability of using the canonical base in real-world applications. In this
paper we shall introduce an approach that remedies this deficit by allowing
the canonical base to be computed in a parallel manner. First experimental
evaluations show that for sufficiently large data-sets the speedup is proportional
to the number of available CPUs.
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1 Introduction

The implicational theory of a formal context is of interest in a large variety of appli-
cations. In those cases, computing the canonical base of the given context is often
desirable, as it has minimal cardinality among all possible bases. On the other hand,
conducting this computation often imposes a major challenge, often endangering the
practicability of the underlying approach.
There are two known algorithms for computing the canonical base of a formal

context [6, 12]. Both algorithms work sequentially, i.e. they compute one implication
after the other. Moreover, both algorithms compute in addition to the implications
of the canonical base all formal concepts of the given context. This is a disadvantage,
as the number of formal concepts can be exponential in the size of the canonical base.
On the other hand, the size of the canonical base can be exponential in the size of
the underlying context [10]. Additionally, up to today it is not known whether the
canonical base can be computed in output-polynomial time, and certain complexity
results hint at a negative answer [3]. For the algorithm from [6], and indeed for any
algorithm that computes the pseudo-intents in a lectic order, it has been shown that
it cannot compute the canonical base with polynomial delay [2].

However, the impact of theoretical complexity results for practical application is often
hard to access, and it is often worth investigating faster algorithm for theoretically in-
tractable results. A popular approach is to explore the possibilities to parallelize known se-
quential algorithms. This is also true for formal concept analysis, as can be seen in the de-
velopment of parallel versions for computing the concept lattice of a formal context [5, 13].

In this work we want to investigate the development of a parallel algorithm for
computing the canonical base of a formal context K. The underlying idea is actually
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quite simple, and has been used by Lindig [11] to (sequentially) compute the concept
lattice of a formal context: to compute the canonical base, we compute the lattice
of all intents and pseudo-intents of K. This lattice can be computed bottom up, in
a level-wise order, and this computation can be done in parallel provided that the
lattice has a certain “width” at a particular level. The crucial fact now is that the upper
neighbours of an intent or pseudo-intent B can be easily computed by just iterating over
all attributes m /∈ B and computing the closure of B∪{m}. In the approach of Lindig
mentioned above this closure is just the usual double-prime operation B 7→ BII of the
underlying formal context K. In our approach it is the closure operator whose closures
are exactly the intents and pseudo-intents of K. Surprisingly, despite the simpleness
of our approach, we are not aware of any prior work on computing the canonical base
of a formal context in a parallel manner. Furthermore, experimental results presented
in this work indicate that for suitable large data-sets the computation of the canonical
base can be speed up by a factor proportional to the number of available CPUs.
The paper is structured as follows. After recalling all necessary notions of formal

concept analysis in Section 2, we shall describe in Section 3 our approach of computing
the canonical base in parallel. Benchmarks of this algorithm are presented in Section 4,
and we shall close this work with some conclusions in Section 5.

2 Preliminaries

This section gives a brief overview on the notions of formal concept analysis [7] that are
used in this document. The basic structure is a formal context K = (G,M,I) consisting
of a set G of objects, a setM of attributes, and an incidence relation I ⊆ G×M . For a
pair (g,m) ∈ I we also use the infix notation g I m, and say that the object g has the
attributem. Each formal contextK induces the derivation operators ·I : P(G)→ P(M)
and ·I : P(M)→ P(G) that are defined as follows for object sets A ⊆ G and attribute
sets B ⊆M :

AI := {m ∈M | ∀g ∈ A : (g,m) ∈ I } and BI := {m ∈M | ∀m ∈ B : (g,m) ∈ I } .

In other words, AI is the set of all attributes that all objects from A have in common,
and dually BI is the set of all objects which have all attributes from B. A formal
concept of K is a pair (A,B) such that AI = B and B = AI , and the set of all formal
concepts of K is denoted by B(K).

An implication over the setM is an expression of the formX → Y whereX,Y ⊆M .
An implication X → Y over M is valid in K if XI ⊆ Y I . A set L of implications over
M is valid in K if each implication in L is valid in K. An implication X → Y follows
from the set L if X → Y is valid in every context with attribute set M in which L
is valid. Furthermore, a model of X → Y is a set T ⊆M such that X ⊆ T implies
Y ⊆ T . A model of L is a model of all implications in L, and XL is the smallest
superset of X that is a model of L. The set XL can be computed as follows.

XL :=
⋃

n≥1
XLn where XL1 := X ∪

⋃
{B |A→ B ∈ L and A ⊆ X }

and XLn+1 := (XLn)L1 for all n ∈ N.
The following lemma shows some well-known equivalent statements for entailment

of implications from implication sets. We will not prove them here.
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Lemma 1. Let L∪ {X → Y } be a set of implications over M. Then the following
statements are equivalent:

1. X → Y follows from L.
2. If K is a formal context with attribute set M such that L is valid in K, then
X → Y is also valid in K.

3. If T ⊆M and T is a model of L, then T is a model of X → Y .
4. Y ⊆ XL.
An attribute set B ⊆ M is called intent of K = (G,M,I) if B = BII. An at-

tribute set P ⊆M is called pseudo-intent of K if P 6= P II , and furthermore for each
pseudo-intent Q ( P the set inclusion QII ⊆ P is satisfied. We denote the set of all
pseudo-intents of K by PsInt(K). Then the canonical implicational base of K is defined
as the following implication set:

{P → P II | P ∈ PsInt(K)}.

The canonical base has the property that it is a minimal base of K, i.e. it is a base of K,
meaning that it is a set of valid implications of K such that every valid implication
of K is entailed by it. Furthermore, its cardinality is minimal among all bases of K.
It is readily verified that a subset X ⊆M is an intent or a pseudo-intent of K if

and only if X is a closure of the closure operator K∗ that is defined as follows:

XK∗
:=
⋃

n≥1
XK∗

n where XK∗
1 := X ∪

⋃
{P II | P ∈ PsInt(K) and P ( X }

and XK∗
n+1 := (XK∗

n)K
∗
1 for all n ∈ N.

Of course, if L is the canonical base of K as described above, then both closure operators
K∗ and L∗ coincide, where L∗ is defined by the following equations:

XL
∗

:=
⋃

n≥1
XL

∗
n where XL

∗
1 := X ∪

⋃
{B |A→ B ∈ L and A ( X }

and XL
∗
n+1 := (XL

∗
n)L

∗
1 for all n ∈ N.

3 Parallel Computation of the Canonical Base

The well-known NextClosure algorithm developed by Ganter [6] can be used to enumer-
ate the implications of the canonical base. The mathematical idea behind this algorithm
is to compute all intents and pseudo-intents of our formal context K in a certain linear
order, namely the lectic order. As an advantage the next (pseudo-)intent is uniquely deter-
mined, but we potentially have to do backtracking in order to find it. It can be seen quite
easily that those sets form a complete lattice, and the NextClosure algorithm uses the
closure operatorK∗ of this lattice to enumerate the pseudo-intents ofK in the lectic order.
Furthermore, this algorithm is inherently sequential, i.e. it is not possible to parallelize it.
In our approach we shall not make use of the lectic order. Indeed, our algorithm

will enumerate all intents and pseudo-intents of K in the subset-order, with no further
restrictions. As a benefit we get a very easy and obvious way to parallelize this enu-
meration. Moreover, in multi-threaded implementations no communication between
different threads is necessary. However, as it is the case with all other known algorithms
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for computing the canonical base, we also have to compute all intents in addition to
all pseudo-intents of the given formal context.
The main idea is very simple and works as follows. From the definition of pseudo-

intents we see that in order to decide whether an attribute set P ⊆M is a pseudo-intent
we only need all pseudo-intents Q ( P , i.e. it suffices to know all pseudo-intents with
a smaller cardinality than P . This allows for the level-wise computation of the canon-
ical base w.r.t. the subset inclusion order, i.e.we can enumerate the (pseudo-)intents
w.r.t. increasing cardinality.

An algorithm that implements this idea works as follows. First we start by considering
the empty set, as it is the only set with cardinality 0. Of course, the empty set must
either be an intent or a pseudo-intent, and the distinction can be made by checking
whether ∅ = ∅II. Then assuming inductively that all pseudo-intents with cardinality
< k have been determined, we can correctly decide whether a subset P ⊆ M with
|P | = k is a pseudo-intent or not.

To compute the lattice of intents and pseudo-intents of K the algorithm manages a
set of candidates that contains the (pseudo-)intents on the current level. Then, whenever
a pseudo-intent P has been found, the ⊆-next closure is uniquely determined by its
closure P II in the context K. If an intent B has been found, then the ⊆-next closures
must be of the form (B ∪ {m})K∗

, m /∈ B. However, as we are not aware of the full
implicational base of K yet, but only of an approximation L of it, the operators K∗ and
L∗ do not coincide on all subsets of M . We will show that they yield the same closure
for attribute sets B ⊆ M with a cardinality |B| ≤ k if L contains all implications
P → P II where P is a pseudo-intent of K with cardinality |P | < k. Consequently, the
L∗-closure of a set B ∪ {m} may not be an intent or pseudo-intent of K. Instead they
are added to the candidate list, and are processed when all pseudo-intents with smaller
cardinality have been determined. We will formally prove that this technique is correct.
Furthermore, the computation of all pseudo-intents and intents of cardinality k can
be done in parallel, since they are independent of each other.

In summary, we shortly describe the inductive structure of the algorithm as follows:
Let K be a finite formal context. We use four variables: k denotes the current cardinality
of candidates, C is the set of candidates, B is a set of formal concepts, and L is an
implication set. Then the algorithm works as follows.

1. Set k := 0, C := {∅}, B := ∅, and L := ∅.
2. In parallel: For each candidate set C ∈ C with cardinality |C| = k determine

whether it is L∗-closed. If not, then add its L∗-closure to the candidate set C, and
go to Step 5.

3. If C is an intent of K, then add the formal concept (CI,C) to B. Otherwise C
must be a pseudo-intent, and thus we add the formal implication C → CII to the
set L, and add the formal concept (CI,CII) to the set B.

4. For each observed intent CII, add all its upper neighbours CII ∪ {m} where
m /∈ CII to the candidate set C.

5. Wait until all candidates of cardinality k have been processed. If k < |M |, then in-
crease the candidate cardinality k by 1, and go to Step 2. Otherwise returnB and L.

In order to approximate the operator L∗ we furthermore introduce the following
notion: If L is a set of implications, then L�k denotes the subset of L that consists
of all implications whose premises have a cardinality of at most k.
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Lemma 2. Let K = (G,M,I) be a formal context, L its canonical implicational base,
and X ⊆M an attribute set. Then the following statements are equivalent:

1. X is either an intent or a pseudo-intent of K.
2. X is K∗-closed.
3. X is L∗-closed.
4. X is (L�|X|−1)∗-closed.
5. There is a k ≥ |X| − 1 such that X is (L�k)∗-closed.
6. For all k ≥ |X| − 1 it holds that X is (L�k)∗-closed.

Proof. 1⇔2. If X is an intent or a pseudo-intent, then it is obviously K∗1-closed,
i.e. K∗-closed. Vice versa, if X is K∗-closed, but no intent, then X contains the closure
P II of every pseudo-intent P ( X, and hence X must be a pseudo-intent. 2⇔3. is
obvious. 3⇔4. follows directly from the fact that P ( X implies |P | < |X|. 4⇔5.
The only-if-direction is trivial. Consider k ≥ |X| − 1 such that X is (L�k)∗-closed.
Then X contains all conclusions B where A→ B ∈ L is an implication with premise
A ( X such that |A| ≤ k. Of course, A ( X implies |A| < |X|, and thus X is
(L�|X|−1)∗-closed as well. 4⇔6. The only-if-direction is trivial. Finally, assume that
k ≥ |X| − 1 and X is (L�|X|−1)∗-closed. Obviously, there are no subsets A ( X with
|X| ≤ |A| ≤ k, and so X must be (L�k)∗-closed, too. ut

As an immediate consequence of Lemma 2 we infer that in order to decide the
K∗-closedness of an attribute set X it suffices to know all implications in the canonical
base whose premise has a lower cardinality than X.

Corollary 3. If L contains all implications P → P II where P is a pseudo-intent
of K with |P | < k, and otherwise only implications with premise cardinality k, then
for all attribute sets X ⊆M with |X| ≤ k the following statements are equivalent:

1. X is an intent or a pseudo-intent of K.
2. X is L∗-closed.

This corollary allows us in a certain sense to approximate the set of all K∗-closures
w.r.t. increasing cardinality, and thus also permits the approximation of the closure
operator L∗ where L is the canonical base of K. In the following Lemma 4 we will
characterise the structure of the lattice of all K∗-closures, and also give a method to
compute upper neighbours. It is true that between comparable pseudo-intents there
must always be an intent. In particular, the unique upper K∗-closed neighbour of a
pseudo-intent must be an intent.

Lemma 4. Let K be a formal context. Then the following statements are true:

1. If P ⊆ M is a pseudo-intent, then there is no intent or pseudo-intent strictly
between P and P II.

2. If B ⊆ M is an intent, then the next intents or pseudo-intents are of the form
(B ∪ {m})K∗

for attributes m 6∈ B.
3. If X ( Y ⊆ M are neighbouring K∗-closures, then Y = (X ∪ {m})K∗

for all
attributes m ∈ Y \X.
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Algorithm 1 NextClosures (K)

1 k := 0, C := {∅}, B := ∅, L := ∅
2 while k ≤ |M| do
3 for all C ∈ C with |C| = k do in parallel
4 C := C \ {C }
5 if C = CL∗

then
6 if C 6= CII then
7 L := L∪ {C → CII }
8 B := B∪ { (CI,CII)}
9 C := C∪ {CII ∪ {m} |m 6∈ CII }
10 else
11 C := C∪ {CL∗ }
12 Wait for termination of all parallel processes.
13 k := k + 1
14 return (B,L)

Proof. 1. Let P ⊆M be a pseudo-intent of K. Then for every intent B between P
and P II, i.e. P ⊆ B ⊆ P II, we have B = BII = P II. Thus, there cannot be an
intent strictly between P and P II. Furthermore, if Q were a pseudo-intent such
that P ( Q ⊆ P II, then P II ⊆ Q, and thus Q = P II, a contradiction.

2. Let B ⊆M be an intent ofK, andX ⊇ B an intent or pseudo-intent ofK such that
there is no other intent or pseudo-intent between them. Then B ⊆ B ∪ {m} ⊆ X
for every m ∈ X \ B. Thus, B = BK∗ ( (B ∪ {m})K∗ ⊆ XK∗

= X. Then
(B ∪ {m})K∗

is an intent or a pseudo-intent between B and X that strictly
contains B, and hence X = (B ∪ {m})K∗

.
3. Consider an attribute m ∈ Y \ X. Then X ∪ {m} ⊆ Y , and thus X (

(X ∪ {m})K∗ ⊆ Y , as Y is already closed. Therefore, (X ∪ {m})K∗
= Y . ut

We are now ready to formulate our algorithm NextClosures in pseudo-code, see
Algorithm 1. In the remainder of this section we shall show that this algorithm always
terminates for finite formal contexts K, and that it returns the canonical base as well as
the set of all formal concepts of K. Beforehand, let us introduce the following notation:

1. NextClosures is in state k if it has processed all candidate sets with a cardinality
≤ k, but none of cardinality > k.

2. Ck denotes the set of candidates in state k.
3. Lk denotes the set of implications in state k.
4. Bk denotes the set of formal concepts in state k.

Proposition 5. Let K be a formal context, and assume that NextClosures has been
started on K and is in state k. Then the following statements are true:

1. Ck contains all pseudo-intents of K with cardinality k + 1, and all intents of K
with cardinality k+ 1 whose corresponding formal concept is not already in Bk.

2. Bk contains all formal concepts of K whose intent has cardinality ≤ k.
3. Lk contains all implications P → P II where the premise P is a pseudo-intent of K

with cardinality ≤ k.
4. Between the states k and k + 1 an attribute set with cardinality k + 1 is an intent

or pseudo-intent of K if and only if it is L∗-closed.
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Proof. We prove the statements by induction on k. The base case handles the initial
state k = −1. Of course, ∅ is always an intent or a pseudo-intent of K. Furthermore, it is
the only attribute set of cardinality 0 and contained in the candidate set C. As there are
no sets with cardinality≤ −1,B−1 and L−1 trivially satisfy Statements 2 and 3. Finally,
we have that L−1 = ∅, and hence every attribute set is L∗−1-closed, in particular ∅.

We now assume that the induction hypothesis is true for k. For every implication
set L between states k and k + 1, i.e. Lk ⊆ L ⊆ Lk+1, the induction hypothesis yields
that L contains all formal implications P → P II where P is a pseudo-intent of K with
cardinality ≤ k, and furthermore only implications whose premises have cardinality k+1
(by definition of Algorithm 1). Additionally, we know that the candidate set C contains
all pseudo-intents P of K where |P | = k+1, and all intents B of K such that |B| = k+1
and (BI,B) /∈B. Corollary 3 immediately yields the validity of Statements 2 and 3
for k + 1, as those K∗-closures are recognized correctly in line 5. Then Lk+1 contains
all implications P → P II where P is a pseudo-intent of K with |P | ≤ k+ 1, and hence
each implication set L with Lk+1 ⊆ L ⊆ Lk+2 contains all those implications and
furthermore only implications with a premise cardinality k + 2. By another application
of Corollary 3 we conclude that also Statement 4 is satisfied for k+ 1.
Finally, we show Statement 1 for k + 1. Consider any K∗-closed set X where
|X| = k + 2. Then Lemma 4 states that for all lower K∗-neighbours Y and all
m ∈ X \ Y it is true that (Y ∪ {m})K∗

= X. We proceed with a case distinction.
If there is a lower K∗-neighbour Y which is a pseudo-intent, then Lemma 4 yields that

the (unique) next K∗-neighbour is obtained as Y II , and the formal concept (Y I, Y II)
is added to the set B in line 8. Of course, it is true that X = Y II.

Otherwise all lower K∗-neighbours Y are intents, and in particular this is the case for
X being a pseudo-intent by Lemma 4. Then for all these Y we have (Y ∪{m})K∗

= X
for all m ∈ X \Y . Furthermore, all sets Z with Y ∪{m} ( Z ( X are not K∗-closed.
Since X \ Y is finite, the following sequence must also be finite:

C0 := Y ∪ {m} and Ci+1 := CL
∗

i where L|Ci|−1 ⊆ L ⊆ L|Ci|.

The sequence is well-defined, since implications from L|Ci|\L|Ci|−1 have no influence on
the closure of Ci. Furthermore, the sequence obviously ends with the setX, and contains
no further K∗-closed sets, and each of the sets C0,C1, . . . appears as a candidate during
the run of the algorithm, cf. lines 9 and 11. ut

From the previous result we can infer that in the last state |M | the set B contains
all formal concepts of the input context K, and that L is the canonical base of K. Both
sets are returned from Algorithm 1, and hence we can conclude that NextClosures
is sound and complete. The following corollary summarises our results obtained so far,
and also shows termination.

Corollary 6. If the algorithm NextClosures is started on a finite formal context K
as input, then it terminates, and returns both the set of all formal concepts and the
canonical base of K as output.

Proof. The second part of the statement is a direct consequence of Proposition 5. In
the final state |M | the set L contains all formal implications P → P II where P is a
pseudo-intent of K. In particular, L is the canonical implicational base. Furthermore,
the set B contains all formal concepts of K.
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Finally, the computation time between states k and k + 1 is finite, because there
are only finitely many candidates of cardinality k + 1, and the computation of closures
w.r.t. the operators L∗ and ·II can be done in finite time. As there are exactly |M |
states for a finite formal context, the algorithm must terminate. ut

One could ask whether there are formal contexts that do not allow for a speedup
in the enumeration of all intents and pseudo-intents on parallel execution. This would
happen for formal contexts whose intents and pseudo-intents are linearly ordered.
However, this is impossible.

Lemma 7. Let K = (G,M,I) be a non-empty clarified formal context. Then the set
of its intents and pseudo-intents is not linearly ordered w.r.t. subset inclusion ⊆.

Proof. Assume that K := (G,M,I) with G := {g1, . . . , gn }, n > 0, were a clar-
ified formal context with intents and pseudo-intents P1 ( P2 ( . . . ( P`. In
particular, then also all object intents form a chain gI1 ( gI2 ( . . . ( gIn where
n ≤ `. Since K is attribute-clarified, it follows

∣∣gIj+1 \ gIj
∣∣ = 1 for all j, and hence

w.l.o.g.M = {m1, . . . ,mn }, and gi I mj iff i ≥ j. Eventually, K is isomorphic to the
ordinal scale Kn := ({1, . . . , n} ,{1, . . . , n} ,≤). It is easily verified that the pseudo-
intents of Kn are either ∅, or of the form {m,n} where m < n− 1, a contradiction.

Consequently, there is no formal context with a linearly ordered set of intents and
pseudo-intents. Hence, a parallel enumeration of the intents and pseudo-intents will
always result in a speedup compared to a sequential enumeration.

4 Benchmarks

The purpose of this section is to show that our parallel algorithm for computing the
canonical base indeed yields a speedup, both qualitatively and quantitatively, compared
to the classical algorithm based on NextClosure [6]. To this end, we shall present the
running times of our algorithm when applied to selected data-sets and with a varying
number of available CPUs. We shall see that, up to a certain limit, the running time of
our algorithms decreases proportional to the number of available CPUs. Furthermore,
we shall also show that this speedup is not only qualitative, but indeed yields a real
speedup compared to the original sequential algorithm for computing the canonical base.
The presented algorithm NextClosures has been integrated into Concept Ex-

plorer FX [8]. The implementation is a straight-forward adaption of Algorithm 1 to the
programming language Java 8, and heavily uses the new Stream API and thread-safe
concurrent collection classes (like ConcurrentHashMap). As we have described before,
the processing of all candidates on the current cardinality level can be done in parallel,
i.e. for each of them a separate thread is started that executes the necessary operations
for lines 4 to 11 in Algorithm 1. Furthermore, as the candidates on the same level cannot
affect each other, no communication between the threads is needed. More specifically,
we have seen that the decision whether a candidate is an intent or a pseudo-intent is
independent of all other sets with the same or a higher cardinality.

The formal contexts used for the benchmarks 1 are listed in Figure 1, and are either
obtained from the FCA Data Repository [4] ( a to d , and f to p ), randomly created
1 Readers who are interested in the test contexts should send a mail to one of the authors.
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Formal Context Objects Attributes Density
a car.cxt 1728 25 28%
b mushroom.cxt 8124 119 19%
c tic-tac-toe.cxt 958 29 34%
d wine.cxt 178 68 20%
e algorithms.cxt 2688 54 22%
f o1000a10d10.cxt 1000 10 10%
g o1000a20d10.cxt 1000 20 10%
h o1000a36d17.cxt 1000 36 16%
i o1000a49d14.cxt 1000 49 14%
j o1000a50d10.cxt 1000 50 10%
k o1000a64d12.cxt 1000 64 12%
l o1000a81d11.cxt 1000 81 11%
m o1000a100d10-001.cxt 1000 100 11%
n o1000a100d10-002.cxt 1000 100 11%
o o1000a100d10.cxt 1000 100 11%
p o2000a81d11.cxt 2000 81 11%
q 24.cxt 17 26 51%
r 35.cxt 18 24 43%
s 51.cxt 26 17 76%
t 54.cxt 20 20 48%
u 79.cxt 25 26 68%

Fig. 1. Formal Contexts in Benchmarks

( q to n ), or created from experimental results ( e ). For each of them we executed
the implementation at least three times, and recorded the average computation times.
The experiments were performed on the following two systems:

Taurus (1 Node of Bull HPC-Cluster, ZIH)
CPUs: 2x Intel Xeon E5-2690 with eight cores @ 2.9GHz, RAM: 32GB

Atlas (1 Node of Megware PC-Farm, ZIH)
CPUs: 4x AMD Opteron 6274 with sixteen cores @ 2.2GHz, RAM: 64GB

The benchmark results are displayed in Figure 2. The charts have both axes
logarithmically scaled, to emphasise the correlation between the execution times and the
number of available CPUs. We can see that the computation time is almost inverse linear
proportional to the number of available CPUs, provided that the context is large enough.
In this case there are enough candidates on each cardinality level for the computation
to be done in parallel. However, we shall note that there are some cases where the
computation times increase when utilising all available CPUs. We are currently not aware
of an explanation for this exception – maybe it is due to some technical details of the
platforms or the operation systems, e.g. some background tasks that are executed during
the benchmark, or overhead caused by thread maintenance. Note that we did not have full
system access during the experiments, but could only execute tasks by scheduling them
in a batch system. Additionally, for some of the test contexts only benchmarks for a large
number of CPUs could be performed, due to the time limitations on the test systems.
Furthermore, we have performed the same benchmark with small-sized contexts

having at most 15 attributes. The computation times were far below one second. We
have noticed that there is a certain number of available CPUs for which there is no
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Fig. 2. Benchmark Results (left: Atlas, right: Taurus)
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Fig. 3. Performance Comparison

further increase in speed of the algorithm. This happens when the number of candidates
is smaller than the available CPUs.

Finally, we compared our two implementations of NextClosure and NextClosures
when only one CPU is utilised. The comparison was performed on a notebook with
Intel Core i7-3720QM CPU with four cores @ 2.6GHz and 8GB RAM. The results
are shown in Figure 3. We conclude that our proposed algorithm is on average as fast
as NextClosure on the test contexts. The computation time ratio is between 1

3 and 3,
depending on the specific context. Low or no speedups are expected for formal contexts
where NextClosure does not have to do backtracking, and hence can find the next
intent or pseudo-intent immediately.

5 Conclusion

In this paper we have introduced the parallel algorithm NextClosures for the computa-
tion of the canonical base. It constructs the lattice of all intents and pseudo-intents of a
given formal context from bottom to top in a level-wise order w.r.t. increasing cardinality.
As the elements in a certain level of this lattice can be computed independently, they
can also be enumerated in parallel, thus yielding a parallel algorithm for computing the
canonical base. Indeed, first benchmarks show that NextClosures allows for a speedup
that is proportional to the number of available CPUs, up to a certain natural limit.
Furthermore, we have compared its performance to the well-known algorithm NextClo-
sure when utilising only one CPU. It could be observed that on average our algorithm
(on one CPU) has the same performance as NextClosure, at least for the test contexts.

So far we have only introduced the core idea of the algorithm, but it should be clear
that certain extensions are possible. For example, it is not hard to see that our parallel
algorithm can be extended to also handle background knowledge given as a set of impli-
cations or as a constraint closure operator [1]. In order to yield attribute exploration, our
algorithm can also be extended to include expert interaction for exploration of the canoni-
cal base of partially known contexts, much in the same way as the classical algorithm. One
benefit is the possibility to have several experts answering questions in parallel. Another
advantage is the constant increase in the difficulty of the questions (i.e. premise cardi-
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nality), compared to the questions posed by default attribute exploration in lectic order.
Those extensions have not been presented here due to a lack of space, but we shall present
them in a future publication. Meanwhile, they can be found in a technical report [9].
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