
Merging Closed Pattern Sets in Distributed
Multi-Relational Data

Hirohisa Seki⋆ and Yohei Kamiya

Dept. of Computer Science, Nagoya Inst. of Technology,
Showa-ku, Nagoya 466-8555, Japan

seki@nitech.ac.jp

Abstract. We consider the problem of mining closed patterns from
multi-relational databases in a distributed environment. Given two lo-
cal databases (horizontal partitions) and their sets of closed patterns
(concepts), we generate the set of closed patterns in the global database
by utilizing the merge (or subposition) operator, studied in the field of
Formal Concept Analysis. Since the execution times of the merge opera-
tions increase with the increase in the number of local databases, we pro-
pose some methods for improving the merge operations. We also present
some experimental results using a distributed computation environment
based on the MapReduce framework, which shows the effectiveness of
the proposed methods.

Key Words: multi-relational data mining, closed patterns, merge (sub-
position) operator, FCA, distributed databases, MapReduce

1 Introduction

Multi-relational data mining (MRDM) has been extensively studied for more
than a decade (e.g., [7, 8] and references therein), and is still attracting increas-
ing interest in the fields of data mining (e.g., [14, 29]) and inductive logic pro-
gramming (ILP). In the framework of MRDM, data and patterns (or queries)
are represented in the form of logical formulae such as datalog (a class of first
order logic). This expressive formalism of MRDM allows us to use complex and
structured data in a uniform way, including trees and graphs in particular, and
multi-relational patterns in general.

On the other hand, Formal Concept Analysis (FCA) has been developed as
a field of applied mathematics based on a clear mathematization of the notions
of concept and conceptual hierarchy [11]. While it has attracted much interest
from various application areas including, among others, data mining, knowledge
acquisition and software engineering (e.g., [12]), research on extending the capa-
bilities of FCA for AI (Artificial Intelligence) has recently been attracted much
attention [20].

⋆ This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C)
24500171.

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 71–83,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.

The notion of iceberg query lattices, proposed by Stumme [30], combines the
notions of MRDM and FCA; frequent datalog queries in MRDM correspond
to iceberg concept lattices (or frequent closed itemsets) in FCA. Ganter and
Kuznetsov [10] have extensively studied the framework of more expressive pat-
tern structures. In MRDM, condensed representations such as closed patterns
and free patterns have been also studied in c-armr by De Raedt and Ramon [6],
and in RelLCM2 by Garriga et al. [13].

We consider in this paper the problem of mining closed patterns (or queries)
in multi-relational data, particularly applying the notion of iceberg query lat-
tices to a distributed mining setting. The assumption that a given dataset is
distributed and stored in different sites will be reasonable for some situations
where we might not be able to move local datasets into a centralized site due to
too much data size and/or privacy concerns.

Given two local databases (horizontal partitions) and their sets of closed
patterns (concepts), the set of closed patterns in the global database can be con-
structed by using subposition) operator [11, 33] or the merge operator [23]. From
our preliminary experiments [28] using a distributed computation environment
MapReduce [3], we have found that the execution times of computing the merge
operations have increased with the increase in the number of local databases. In
this paper, we therefore propose some methods for computing the merge opera-
tions so that we can efficiently construct the set of global closed patterns from
the sets of local closed patterns. Our methods are based on the properties of the
merge operator.

The organization of the rest of this paper is as follows. After summarizing
some basic notations and definitions of closed patterns mining in MRDM in
Sect. 2, we consider distributed closed pattern mining in MRDB and the merge
operator in Sect. 3. We then explain our approach to improving the merge oper-
ations in Sect. 4. In Section 5, we show the effectiveness of our methods by some
experimental results. Finally, we give a summary of this work in Section 6.

2 Iceberg Query Lattices in Multi-Relational Data
Mining

2.1 Multi-Relational Data Mining

In the task of frequent pattern mining in multi-relational databases, we assume
that we have a given database r, a language of patterns, and a notion of fre-
quency which measures how often a pattern occurs in the database. We use
datalog, or Prolog without function symbols other than constants, to represent
data and patterns. We assume some familiarity with the notions of logic pro-
gramming (e.g., [22, 24]), although we introduce some notions and terminology
in the following.

Example 1. Consider a multi-relational database r in Fig. 1 (above), which con-
sists of five relations, Customer, Parent, Buys,Male and Female. For each rela-
tion, we introduce a corresponding predicate, i.e., customer , parent , buys,male
and female, respectively.

72 Hirohisa Seki and Yohei Kamiya

Customer

key

allen
carol
diana
fred

Parent

SR. JR.

allen bill
allen jim
carol bill
diana eve
fred eve
fred hera

Buys

key item

allen pizza
carol pizza
diana cake
fred cake

Male

person

bill
jim

Female

person

eve
hera

key(X)

{a, c, d, f}

key(X), buys(X, pizza)

{a, c}

key(X), parent(X, Y)

{(a, b), (a, j), (c, b),
(d, e), (f, e), (f, h)}

key(X), buys(X, cake)

{d, f}

key(X), buys(X, pizza),
parent(X, Y),male(Y)

{(a, b), (a, j), (c, b)}

key(X), buys(X, cake),
parent(X, Y), female(Y)

{(d, e), (f, e), (f, h)}

Fig. 1. An Example of Datalog Database r with customer relation as a key (above)
and the Iceberg Query Lattice Associated to r (below), where a substitution θ =
{X/t1, Y/t2} (resp., θ = {X/t1}) is simply denoted by (t1, t2) (resp., t1), and the name
(e.g., allen) of each person in the tables is abbreviated to its first character (e.g., a).

Consider the following pattern P = customer(X), parent(X, Y), buys(X, pizza).
For a substitution θ, Pθ is logically entailed by r, denoted by r |= Pθ, if there
exists a tuple (a1, a2) such that a1 ∈ Customer, (a1, a2) ∈ Parent, and tuple
(a1, pizza) ∈ Buys. Then, answerset(P, r) = {{X/allen, Y/bill}, {X/allen, Y/jim},
{X/carol , Y/bill}}. 2

An atom (or literal) is an expression of the form p(t1,tn), where p is a
predicate (or relation) of arity n, denoted by p/n, and each ti is a term, i.e., a
constant or a variable.

A substitution θ = {X1/t1, . . . , Xn/tn} is an assignment of terms to variables.
The result of applying a substitution θ to an expression E is the expression Eθ,
where all occurrences of variables Vi have been simultaneously replaced by the
corresponding terms ti in θ. The set of variables occurring in E is denoted by
Var(E).

A pattern is expressed as a conjunction of atoms (literals) l1∧· · ·∧ln, denoted
simply by l1, . . . , ln. A pattern is sometimes called a query . We will represent
conjunctions in list notation, i.e., [l1, . . . , ln]. For a conjunction C and an atom
p, we denote by [C, p] the conjunction that results from adding p after the last
element of C.

Merging Closed Pattern Sets in Distributed Multi-Relational Data 73

Let C be a pattern (i.e., a conjunction) and θ a substitution of Var(C).
When Cθ is logically entailed by a database r, we write it by r |= Cθ. Let
answerset(C, r) be the set of substitutions satisfying r |= Cθ.

In multi-relational data mining, one of the predicates is often specified as a
key (or target) (e.g., [4, 6]), which determines the entities of interest and what is
to be counted. The key (target) is thus to be present in all patterns considered.
In Example 1, the key is predicate customer .

Let r be a database and Q be a query containing a key atom key(X). Then,
the support (or frequency) of Q, denoted by supp(Q, r, key), is defined to be
the number of different keys that answer Q (called the support count or abso-
lute support), divided by the total number of keys. Q is said to be frequent , if
supp(Q, r, key) is no less than some user defined threshold min sup.

A pattern containing a key will not be always meaningful; for example, let
C = [customer(X), parent(X, Y), buys(Z, pizza)] be a conjunction in Example 1.
Variable Z in C is not linked to variable X in key atom customer(X); an object
represented by Z will have nothing to do with key object X. It will be inap-
propriate to consider such a conjunction as an intended pattern to be mined. In
ILP, the following notion of linked literals [16] is used to specify the so-called
language bias.

Definition 1 (Linked Literal). [16] Let key(X) be a key atom and l a literal.
l is said to be linked to key(X), if either X ∈ Var(l) or there exists a literal l1
such that l is linked to key(X) and Var(l1) ∩ Var(l) ̸= ∅. 2

Given a database r and a key atom key(X), we assume that there are pre-
defined finite sets of predicate (resp. variables; resp. constant symbols), and
that, for each literal l in a conjunction C, it is constructed using the predefined
sets. Moreover, each pattern C of conjunctions satisfies the following conditions:
key(X) ∈ C and, for each l ∈ C, l is linked to key(X). In the following, we de-
note by Q the set of queries (or patterns) satisfying the above bias condition.

2.2 Iceberg Query Lattices with Key

We now consider the notion of a formal context in MRDM, following [30].

Definition 2. [30] Let r be a datalog database and Q a set of datalog queries.
The formal context associated to r and Q is defined by Kr, Q = (Or, Q, Ar, Q, Ir, Q),
where Or, Q = {θ | θ is a grounding substitution for all Q ∈ Q}, and Ar, Q = Q,
and (θ, Q) ∈ Ir, Q if and only if θ ∈ answerset(Q, r). 2

From this formal context, we can define the concept lattice the same way as
in [30]. We first introduce an equivalence relation ∼r on the set of queries: Two
queries Q1 and Q2 are said to be equivalent with respect to database r if and
only if answerset(Q1, r) = answerset(Q2, r). We note that Var(Q1) = Var(Q2)
when Q1 ∼r Q2.

74 Hirohisa Seki and Yohei Kamiya

Definition 3 (Closed Query). Let r be a datalog database and ∼r the equiv-
alence relation on a set of datalog queries Q. A query (or pattern) Q is said to be
closed (w.r.t. r and Q), iff Q is the most specific query among the equivalence
class to which it belongs: {Q1 ∈ Q | Q ∼r Q1}. 2

For any query Q1, its closure is a closed query Q such that Q is the most
specific query among {Q ∈ Q | Q ∼r Q1}. Since it uniquely exists, we denote
it by Clo(Q1; r). We note again that Var(Q1) = Var(Clo(Q1; r)) by definition.
We refer to this as the range-restricted condition here.

Stumme [30] showed that the set of frequent closed queries forms a lattice,
called an iceberg query lattice. In our framework, it is necessary to take our bias
condition into consideration. To do that, we employ the well-known notion of
the most specific generalization (or least generalization) [26, 24].

For queries Q1 and Q2, we denote by lg(Q1, Q2) the least generalization of
Q1 and Q2. Moreover, the join of Q1 and Q2, denoted by Q1 ∨ Q2, is defined
as: Q1 ∨ Q2 = lg(Q1, Q2)|Q, where, for a query Q, Q|Q is the restriction of Q to
Q, defined by a conjunction consisting of every literal l in Q which is linked to
key(X), i.e., deleting every literal in Q not linked to key(X).

Definition 4. [30] Let r be a datalog database and Q a set of datalog queries.
The iceberg query lattice associated to r and Q for minsupp ∈ [0, 1] is defined as:
Cr, Q = ({Q ∈ Q | Q is closed w.r.t. r and Q, and Q is frequent}, |=), where |=
is the usual logical implication. 2

Example 2. Fig. 1 (below) shows the iceberg query lattice associated to r in Ex. 1
and Q with the support count 1, where each query Q ∈ Q has customer(X) as
a key atom, denoted by key(X) for short, Q is supposed to contain at most two
variables (i.e., X, Y), and the 2nd argument of predicate buys is a constant. 2

Theorem 1. [28] Let r be a datalog database and Q a set of datalog queries
where all queries contain an atom key and they are linked. Then, Cr, Q is a
∨-semi-lattice. 2

3 Distributed Closed Pattern Mining in MRDB

Horizontal Decomposition of MRDB and Mining Local Concepts

Our purpose in this work is to mine global concepts in a distributed setting,
where a global database is supposed to be horizontally partitioned appropriately,
and stored possibly in different sites. We first consider the notion of a horizontal
decomposition of a multi-relational DB. Since a multi-relational DB consists of
multiple relations, its horizontal decomposition is not immediately clear.

Definition 5. Let r be a multi-relational datalog database with a key pred-
icate key . We call a pair r1, r2 a horizontal decomposition of r, if (i) keyr =
keyr1

·∪ keyr2
, i.e., the key relation keyr in r is disjointly decomposed into keyr1

and keyr2
in r1 and r2, respectively, and (ii) for any query Q, answerset(Q, r) =

answerset(Q, r1) ∪ answerset(Q, r2). 2

Merging Closed Pattern Sets in Distributed Multi-Relational Data 75

The second condition in the above states that the relations other than the key
relation in r are decomposed so that any answer substitution in answerset(Q, r)
is computed either in partition r1 or r2, thereby being preserved in this horizon-
tal decomposition. An example of a horizontal decomposition of r is shown in
Example 3 below.

Given a horizontal decomposition of a multi-relational DB, we can utilize
any preferable concept (or closed pattern) mining algorithm for computing local
concepts on each partition, as long as the mining algorithm is applicable to
MRDM and its resulting patterns satisfy our bias condition. We use here an
algorithm called ffCLM [27], which is based on the notion of closure extension
due to Pasquier et al. [25] and Uno et al. [32] in frequent itemset mining.

Computing Global Closed Patterns by Merge Operator in MRDM

To compute the set of global closed patterns from the sets of local closed patterns
in MRDM, we need the following merge operator ⊕. For patterns C1 and C2, we
denote by C1 ∩C2 a possibly empty conjunction of the form: l1 ∧ · · · ∧ lk (k ≥ 0)
such that, for each li (i ≤ k), li ∈ C1 and li ∈ C2.

Theorem 2. [28] Let r be a datalog database, and r1, r2 a horizontal decomposi-
tion of r. Let C (Ci) (i = 1, 2) be the set of closed patterns of r (ri), respectively.
Then, we have the following:

C = C1 ⊕ C2

= (C1 ∪ C2) ∪ {C1 ∩ C2 | C1 ∈ C1, C2 ∈ C2,

C1 ∩ C2 is linked with key.} (1)

The set of global closed patterns C is obtained by the union of the local
closed patterns C1 and C2, and, in addition to that, by intersecting each pat-
tern C1 ∈ C1 and C2 ∈ C2. Furthermore, the pattern obtained by the in-
tersection, C1 ∩ C2, should satisfy the bias condition (Def. 1). We note that
C1 ∩ C2 does not necessarily satisfy the linkedness condition; for example, sup-
pose that C1 (C2) is a closed pattern of the form: C1 = key(X), p(X, Y),m(Y)
(C2 = key(X), q(X,Y),m(Y)), respectively. Then, C1 ∩ C2 = key(X),m(Y),
which is not linked to key(X), and thus does not satisfy the bias condition.

We note that, in the case of transaction databases, the above theorem coin-
cides with the one by Lucchese et al. [23].

Example 3. We consider a horizontal decomposition r1, r2 of r in Example 1
such that the key relation keyr (i.e., Customer) in r is decomposed into keyr1

=
{allen, carol} and keyr2

= {dian, fred}, and the other relations than Customer
are decomposed so that they satisfy the second condition of Def. 5.

Consider a globally closed pattern C = [key(X), parent(X, Y)] in Fig. 1.
In r1, there exists a closed pattern C1 of the form: [C, buys(X, pizza),male(Y)],
while, in r2, there exists a closed pattern C2 of the form: [C, buys(X, cake), female(Y)].
Then, we have that C coincides with C1 ∩ C2. 2

76 Hirohisa Seki and Yohei Kamiya

We can now formulate our problem as follows:

Mining Globally Closed Patterns from Local DBs:
Input: A set of local databases {DB1, . . . ,DBn}
Output: the set of global closed patterns C1..n.

In order to compute C1..n, our approach consists of two phases: we first com-
pute each set Ci (i = 1, . . . , n) of local closed patterns from DB i, and then
we compute C1..n by applying the merge operators. We call the first phase the
mining phase, while we call the second phase the merge phase.

4 Making Merge Computations Efficient in MRDM

In the merge operation in conventional data mining such as itemsets, comput-
ing the intersection of two sets in the merge operation ⊕ is straightforward. In
MRDM, on the other hand, the computation of ⊕ operator becomes somewhat
involved due to handling variables occurring in patterns. Namely, two additional
tests are required: checking the bias condition (linkedness), and checking equiv-
alence modulo variable renaming for eliminating duplicate patterns.

For closed patterns C1 and C2, we must check whether the intersection C1∩C2

satisfies the linkedness condition. Moreover, we must check whether C1 ∩ C2 is
equivalent (modulo variable renaming) to the other patterns obtained so far.
For example, let C1 (C2) be a pattern of the form: C1 = key(X), p(X, Y),m(Y)
(C2 = key(X), p(X,Z),m(Z)), respectively. Then, C1 is equivalent to C2 modulo
variable renaming.

When implementing a data mining system, such handling variables in pat-
terns will necessarily require string manipulations, and such string operations
would lead to undesirable overhead in actual implementation. In the following,
we therefore propose two methods for reducing the computational costs in the
merge operation.

4.1 Partitioning Pattern Sets

When computing the merge operation, we can use the following property:

Proposition 1. Let DB = DB1 ∪DB2, and C (Ci) the set of closed patterns of
DB (DBi) (i = 1, 2), respectively. Then,

C = C1 ⊕ C2

= (C1 ∪ C2) ∪ {C1 ∩ C2| (C1, C2) ∈ (C1, C2) ,

C1 ∩ C2 : linked with key,Var(C1) = Var(C2)} (2)

Proof. Let C be a closed pattern in C such that C is linked with key. From
Theorem 2, it suffices to show that there exist patterns Ci ∈ Ci (i = 1, 2) such
that C = C1 ∩ C2 and Var(C1) = Var(C2).

Let Ci = Clo(C;DB i) (i = 1, 2). Then, we have from the definition of Clo(·; ·)
that Var(C) = Var(C1) = Var(C2). Moreover, we can show that C = C1 ∩ C2,
which is to be proved. 2

Merging Closed Pattern Sets in Distributed Multi-Relational Data 77

From the above proposition, when computing the intersection of each pair of
patterns C1 ∈ C1 and C2 ∈ C2 in (1), we can perform the intersection of only those
pairs (C1, C2) containing the same set of variables, i.e., Var(C1) = Var(C2).
When compared with the original definition of the merge operator ⊕ (Theorem
2), the above property will be utilized to reduce the cost of the merge operations.

4.2 Merging Diff-Sets

Next, we consider another method for making the merge operation efficient,
which is based on the following simple observation:

Observation 1. Given sets of closed patterns C1 and C2, let D1 = C1 \ C2 and
D2 = C2\C1, namely, Di is a difference set (diff-set for short) (i = 1, 2). Suppose
that C is a new (or generator [33]) pattern in C1 ⊕C2, meaning that C ∈ C1 ⊕C2,
while C ̸∈ C1∪C2. Then, C is obtained by intersection operation, i.e., C = C1∩C2

for some patterns C1 ∈ D1 and C2 ∈ D2.

That is, a new closed pattern C will be generated only when intersecting
those patterns in the difference sets in D1 and D2. This fact easily follows from
the property that the set of closed patterns is a semi-lattice: suppose otherwise
that C1 ∈ D1, while C2 ̸∈ D2. Then, C2 ∈ C1. Since both C1 and C2 are in C1, we
have that C = C1 ∩C2 is a closed pattern also in C1, which implies that C is not
a new pattern. Algorithm 1 shows the above-mentioned method based on the
difference sets. In the algorithm, the computation of supports (or occurrences)
is omitted, which is done similarly in [33].

Algorithm 1: Diff-Set Merge(C1, C2)

input : sets of closed patterns C1, C2
output: C1..2 = C1 ⊕ C2

1 C = C1 ∩ C2; D1 = C1 \ C2; D2 = C2 \ C1;
2 foreach pair (C1, C2) ∈ D1 ×D2 do
3 C ← C1 ∩ C2;
4 if C satisfies the bias condition and C ̸∈ C then
5 C ← C ∪ {C};
6 end

7 end
8 return C

5 Experimental Results

Implementation and Test Data

To see the effectiveness of our approach to distributed mining, we have made
some experiments. As for the mining phase, we implemented our approach by

78 Hirohisa Seki and Yohei Kamiya

using Java 1.6.0 22. Experiments of the phase were performed on 8 PCs with
Intel Core i5 processors running at 2.8GHz, 8GB of main memory, and 8MB of
L2 cache, working under Ubuntu 11.04. We used Hadoop 0.20.2 using 8 PCs, and
2 mappers working on each PC. On the other hand, experiments of the merging
phase were performed on one of the PCs.

We use two datasets, often used in the field of ILP; one is the mutagenesis
dataset1, and the other is an English corpus of the Penn Treebank Project2.

The mutagenesis dataset, for example, contains 30 chemical compounds. Each
compound is represented by a set of facts using predicates such as atom, bond ,
for example. The size of the set of predicate symbols is 12. The size of key atom
(active(X)) is 230, and minimum support min sup = 1/230. We assume that
patterns contain at most 4 variables and they contain no constant symbols. The
number of the closed patterns mined is 5, 784.

Effect of Partitioning Pattern Sets

Fig. 2 (left) summarizes the results of the execution times for a test data on the
mutagenesis dataset. We can see from the figure that the execution times t1 of
the mining phase are reduced almost linearly with the number of partitions. On
the other hand, the execution times t2 of the merging phase for obtaining global
closed patterns increase almost linearly with the number p of partitions from 1
(i.e., no partitioning) to 16. This is reasonable; the number of applying the merge
operators is (p − 1) when we have p partitions. Note that the execution time for
the merge phase in the case of a single partition means some start-up overheads
such as opening/reading a file of the results of the mining phase, followed by
preparing the inputs of the merge operation.

In this particular example, the time spent in the merge phase is relatively
small when compared with that for the mining phase. This is because the number
of partitions and the number of local closed patterns are rather small. When the
number of partitions of a global database becomes larger, however, the execution
times for the merging phase will become inevitably larger. Considering efficient
merge algorithms is thus an important issue for scalability in MRDM.

To see the effect of using Proposition 1, Fig. 2 (right) shows the numbers of
closed patterns in a merge computation C1 ⊕ C2 with input sets C1, C2 of closed
patterns for the mutagenesis dataset with 16 partitions. Each table shows the
number of patterns in Ci (i = 1, 2) containing k variables for 1 ≤ k ≤ 4. The
number of computing intersection operations based on Proposition 1 has been
reduced to about 80% of that of the original computation. The execution times
in Fig. 2 (left) are the results obtained by using this method.

1 http://www.cs.ox.ac.uk/activities/machlearn/mutagenesis.html
2 http://www.cis.upenn.edu/ treebank/

Merging Closed Pattern Sets in Distributed Multi-Relational Data 79

Fig. 2. Execution Times of the Mining Phase and the Merge Phase (left) and No. of
Patterns in a Merge Computation (right): An Example in the Mutagenesis Dataset.
Each number in a quadrangle is the size of a closed pattern set. D1 = C1 \ C2 and
D2 = C2 \ C1.

Effect of Merging Diff-Sets

Fig. 3 shows its performance results (the execution times), compared with the
naive method, using the same datasets, the mutagenesis (left) and the English
corpus (right).

In both datasets, the execution times decrease as the number n of the local
DBs increases; in particular, when n = 16 in the mutagenesis data set, the
execution time is reduced to about 43% of that of the naive method. To see the
reason of this results, Fig. 2 (right) shows the sizes of the difference sets D1 and
D2 used in the merge computation C1 ⊕ C2 with input sets C1, C2 of the closed
patterns.

Fig. 3. Results of the Diff-Sets Merge Method: The Mutagenesis Dataset (left) and
The English Corpus (right)

80 Hirohisa Seki and Yohei Kamiya

6 Concluding Remarks

We have considered the problem of mining closed patterns from multi-relational
databases in a distributed environment. For that purpose, we have proposed two
methods for making the merge (or subposition) operations efficient, and we have
then exemplified the effectiveness of our method by some preliminary experi-
mental results using MapReduce/Hadoop distributed computation framework
in the mining process.

In MRDM, efficiency and scalability have been major concerns [2]. Krajca et
al. [17, 18] have proposed algorithms to compute search trees for closed patterns
simultaneously either in parallel or in a distributed manner. Their approaches
are orthogonal to ours; it would be beneficial to employ their algorithms for
computing local closed patterns in the mining phase in our framework.

In this work, we have confined ourselves to horizontal partitions of a global
MRDB. It will be interesting to study vertical partitioning and their mixture in
MRDM, where the apposition operator studied by Valtchev et al. [34] will play
an important role. As future work, our plan is to develop an efficient algorithm
dealing with such a general case in MRDM.

Acknowledgement The authors would like to thank anonymous reviewers for
their useful comments on the previous version of the paper.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. in Proc.
VLDB Conf., pp. 487–499, 1994.

2. Blockeel, H., Sebag, M.: Scalability and efficiency in multi-relational data mining.
SIGKDD Explorations Newsletter 2003, Vol.4, Issue 2, pp.1-14, 2003.

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM, Vol. 51, No. 1, pp.107–113, 2008.

4. Dehaspe, L.: Frequent pattern discovery in first-order logic, PhD thesis, Dept. Com-
puter Science, Katholieke Universiteit Leuven, 1998.

5. Dehaspe, L., Toivonen, H.: Discovery of Relational Association Rules. in S. Dzeroski
and N Lavrac (eds.) Relational Data Mining, pp. 189–212, Springer, 2001.

6. De Raedt, L., Ramon, J.: Condensed representations for Inductive Logic Program-
ming. in Proc. KR’04, pp. 438-446, 2004.

7. Dzeroski, S.: Multi-Relational Data Mining: An Introduction. SIGKDD Explo-
rations Newsletter 2003, Vol.5, Issue 1, pp.1-16, 2003.

8. Dzeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer-Verlag, Inc. 2001.
9. Ganter, B.: Two Basic Algorithms in Concept Analysis, Technical Report FB4-

Preprint No. 831, TH Darmstadt, 1984. also in Formal Concept Analysis, LNCS
5986, pp. 312-340, Springer, 2010.

10. Ganter, B., Kuznetsov, S.: Pattern structures and Their Projections, ICCS-01,
LNCS, 2120, pp. 129-142, 2001.

11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, 1999.

Merging Closed Pattern Sets in Distributed Multi-Relational Data 81

12. Ganter, B., Stumme, G., Wille, R.: Formal Concept Analysis, Foundations and
Applications. LNCS 3626, Springer, 2005.

13. Garriga,G. C., Khardon, R., De Raedt, L.: On Mining Closed Sets in Multi-
Relational Data. in Proc. IJCAI 2007, pp.804-809, 2007.

14. Goethals, B., Page, W. L., Mampaey, M.: Mining Interesting Sets and Rules in
Relational Databases. in Proc. 2010 ACM Sympo. on Applied Computing (SAC ’10),
pp. 997-1001, 2010.

15. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edition, Morgan
Kaufmann Publishers Inc., 2005.

16. Helft, N.: Induction as nonmonotonic inference. in Proc. KR’89, pp. 149–156, 1989.
17. Krajca, P., Vychodil, V.: Distributed Algorithm for Computing Formal Concepts

Using Map-Reduce Framework, in Proc. IDA ’09, Springer-Verlag, pp. 333–344, 2009.
18. Krajca, P., Outrata, J., Vychodil, V.: Parallel algorithm for computing fixpoints

of Galois connections, Annals of Mathematics and Artificial Intelligence, Vol. 59, No.
2, pp. 257–272, Kluwer Academic Publishers, 2010.

19. Kuznetsov, S. O.: A Fast Algorithm for Computing All Intersections of Objects in
a Finite Semi-lattice, Automatic Documentation and Mathematical Linguistics, Vol.
27, No. 5, pp. 11-21, 1993.

20. Kuznetsov, S. O., Napoli, A., Rudolph, S., eds: FCA4AI: “What can FCA do for
Artificial Intelligence?” IJCAI 2013 Workshop, Beijing, China, 2013.

21. Kuznetsov, S. O., Obiedkov, S. A.: Comparing performance of algorithms for gen-
erating concept lattices. J. Exp. Theor. Artif. Intell., 14(2-3):189-216, 2002.

22. Lloyd, J. W.: Foundations of Logic Programming, Springer, Second edition, 1987.
23. Lucchese, C., Orlando, S., Rergo, R.: Distributed Mining of Frequent Closed Item-

sets: Some Preliminary Results. International Workshop on High Performance and
Distributed Mining, 2005.

24. Nienhuys-Cheng, S-H., de Wolf, R.: Foundations of Inductive Logic Programming,
LNAI 1228, Springer, 1997.

25. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Itemsets for Association Rules. in Proc. ICDT’99, LNAI 3245, pp. 398-416, 1999.

26. Plotkin, G.D.: A Note on Inductive Generalization. Machine Intelligence, Vol. 5,
pp. 153-163, 1970.

27. Seki, H., Honda, Y., Nagano, S.: On Enumerating Frequent Closed Patterns with
Key in Muti-relational Data. LNAI 6332, pp. 72-86, 2010.

28. Seki, H., Tanimoto, S.: Distributed Closed Pattern Mining in Multi-Relational
Data based on Iceberg Query Lattices: Some Preliminary Results. in Proc. CLA’12,
pp.115-126, 2012

29. Spyropoulou, E., De Bie. T., Boley, M.: Interesting Pattern Mining in Multi-
Relational Data. Data Min. Knowl. Discov. 42(2), pp. 808-849, 2014.

30. Stumme, G.: Iceberg Query Lattices for Datalog. In Conceptual Structures at
Work, LNCS 3127, Springer-Verlag, pp. 109-125, 2004.

31. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg
Concept Lattices with Titanic. J. on Knowledge and Data Engineering (KDE) 42(2),
pp. 189-222, 2002.

32. Uno, T., Asai, T. Uchida, Y., Arimura, H.: An Efficient Algorithm for Enumerating
Closed Patterns in Transaction Databases. DS’04, LNAI 3245, pp. 16-31, 2004.

33. Valtchev, P., Missaoui, R.: Building Concept (Galois) Lattices from Parts: Gener-
alizing the Incremental Methods. In Proc. 9th Int’l. Conf. on Conceptual Structures:
Broadening the Base (ICCS ’01), Springer-Verlag, London, UK, pp. 290-303, 2001.

34. Valtchev, P., Missaoui, R., Pierre Lebrun, P.: A Partition-based Approach towards
Constructing Galois (Concept) Lattices. Discrete Mathematics 256(3): 801-829, 2002.

82 Hirohisa Seki and Yohei Kamiya

