
Pattern Structures for Understanding Episode
Patterns

Keisuke Otaki⋆, Ikeda Madori and Akihiro Yamamoto

Department of Intelligence Science and Technology
Graduate School of Informatics, Kyoto University, Japan.

{ootaki,m.ikeda}@iip.ist.i.kyoto-u.ac.jp, akihiro@i.kyoto-u.ac.jp

Abstract. We investigate an application of pattern structures for un-
derstanding episodes, which are labeled directed acyclic graphs represent-
ing event transitions. Since typical episode mining algorithms generate a
huge number of similar episodes, we need to summarize them or to obtain
compact representations of them for applying the outcome of mining to
various problems. Though such problems have been well-studied for item-
sets, summarization of episodes is still understudied. For a class called
diamond episodes, we first provide a pattern structure based on hierar-
chy of events to obtain small groups of episodes in the form of pattern
concepts and lattice structures. To find a summary via pattern concepts,
we design an utility function for scoring concepts. After ranking con-
cepts using some function and lattice structures, we try to sample a set
of pattern concepts of high scores as a summary of episodes. We report
our experimental results of our patten structure, and a ranking result of
our simple utility function. Last we discuss pattern concept lattices and
their applications for summarization problems.

Keywords: formal concept analysis, pattern structure, episode pattern, pattern
summarization

1 Introduction

Knowledge Discovery from binary databases is a fundamental problem setting,
where binary databases represent that some objects have some features by their
1 entries. Because such a situation can be seen in many practical problems, both
theoretical and practical aspects of the problems have been studied.

On a mathematical viewpoint, Formal Concept Analysis (FCA) [5] has been
studied as a model of analyzing such binary databases. We deal with a context
K = (O, A, I) consisting of 1) a set O of objects, 2) a set A of attributes, and 3)
a binary relation I ⊆ O×A representing that an i-th object has a j-th attribute.
FCA adopts two functions f and g for analyzing O and A; f receives a set of
objects and returns a set of attributes which are commonly possessed by given
objects, and g receives a set of attributes and returns a set of objects which

⋆ Keisuke Otaki is supported as a JSPS research fellow (DC2, 26·4555).

c© Karell Bertet, Sebastian Rudolph (Eds.): CLA 2014, pp. 47–59,
ISBN 978–80–8152–159–1, Institute of Computer Science, Pavol Jozef Šafárik
University in Košice, 2014.

2

have commonly the input attributes. For X ⊆ O and Y ⊆ A, a tuple (X, Y) is
called a concept if f(X) = Y and X = g(Y). Computing the set of all concepts
is a fundamental but important task in FCA, which help us to analyze binary
databases. On a practical viewpoint, it is well-known that formal concepts are
related to closed itemsets studied in frequent itemset mining [13], which are also
known as compact representations of itemsets.

To deal with non-binary data in an FCA manner, pattern structures [4] have
been studied. A key idea is generalizing both the set intersection ∩ and the subset
relation ⊆, which are used in two functions f and g in FCA. The set intersection
∩ is replaced with a meet operator ⊓ that extracts common substructures of two
objects. The subset relation ⊆ is also replaced with a partial order ⊑ induced
by ⊓, where ⊑ represents some embedding from an object into another. We now
assume that they would help us to understand complex data.

In this paper, we investigate pattern structures and their applications for un-
derstanding patterns, motivated by a requirement of summarization techniques
because a large numbers of patterns is always generated by some mining algo-
rithms. As an example in this paper, we deal with some classes of episode pat-
terns, which represent event transitions in the form of labeled graphs. From such
patterns, we can compute lattice structures based on pattern structures (Sec-
tion 3). Since such lattices represent mutual relations among patterns and several
small clusters as pattern concepts, analyzing them would be helpful to obtain a
small set of pattern concepts. We regard a subset of all concepts as a summary
of features often used in describing patterns, and develop a way of obtaining a
small set of concepts as a summary. When we construct descriptions of objects,
we also introduce the wildcard ⋆ as a special symbol representing all events to
take into account some hierarchy of labels based on our knowledge. It would be
a strong merit of pattern structures for summarization in which similar patterns
could be merged into some descriptions with the wildcard ⋆. After providing
pattern structures, we provide preliminary experimental results (Section 4) and
discuss it on the viewpoint of summarization by giving a utility function for
ranking pattern concepts (Section 5).

2 Formal Concept Analysis and Episode Mining

FCA and Pattern Structures We adopt the standard notations of FCA
from [5] and pattern structures from [4], respectively. Here we refer the notations
of FCA which we have already used in Section 1. For a context K = (O, A, I),
X ⊆ O and Y ⊆ A, two functions f and g in FCA are formally defined by f(X) =
{a ∈ A | (o, a) ∈ I for all o ∈ X} and g(Y) = {o ∈ O | (o, a) ∈ I for all a ∈ Y },
respectively. Recall that a pair (X, Y) is a (formal) concept if f(X) = Y and
g(Y) = X. Two operators f ◦g(·) and g◦f(·) are closure operators on 2O and 2A,
respectively. Note that a concept (X, Y) is in the form either (g(f(X)), f(X))
or (g(Y), f(g(Y)). For two concepts (X1, Y1) and (X2, Y2), the partial order ≤
is introduced by X1 ⊆ X2 (⇔ Y2 ⊆ Y1).

48 Keisuke Otaki, Madori Ikeda and Akihiro Yamamoto

3

An important aspect of pattern structures is generalization of two operations
∩ and ⊆ used in f and g. They are characterized by meet semi-lattices: A meet
semi-lattice (D, ⊓) of a set D and a meet operator ⊓ is an algebraic structure
satisfying: 1) Associativity; x ⊓ (y ⊓ z) = (x ⊓ y) ⊓ z for x, y, z ∈ D, 2) Commu-
tativity; x ⊓ y = y ⊓ x for x, y ∈ D, and 3) Idempotency; x ⊓ x = x for x ∈ D.
Elements in D are called descriptions. A partial order ⊑ is induced by ⊓ as

x ⊑ y whenever x ⊓ y = x for two elements x, y ∈ D.

Example 1 (A meet semi-lattice with sets). Let D = 2N. For two sets of integers
X = {1, 2} and Y = {1, 2, 3, 4}, it holds that X ∩Y = X, which induces X ⊆ Y .

Example 2 (A meet semi-lattice for closed intervals [8]). Let D be a set of all
closed intervals [a, b] with integers a, b ∈ N. They define ⊓ of two closed intervals
by keeping its convexity, that is, [a1, b1] ⊓ [a2, b2] = [min(a1, a2), max(b1, b2)].

By generalizing a meet semi-lattice (2A, ∩) used in FCA, a pattern structure
P is defined by a triple (O, (D, ⊓), δ), where O is the set of objects, (D, ⊓) is
a meet semi-lattice of descriptions, and δ : O → D is a mapping of giving
a description for each object. For analyzing pattern structures, we obtain the
following Galois connection {(·)�, (·)⋄} corresponding to f and g in FCA:

A� = ⊓o∈Aδ(o) for A ⊆ O, (1)

d⋄ = {o ∈ O | d ⊑ δ(o)} for d ∈ D. (2)

Pattern concepts based on P are defined by Equations (1) and (2):

Definition 1 (Pattern concepts) A pattern concept of P is a pair (A, d) of a
set A ⊆ O and a pattern d ∈ D satisfying A� = d and d⋄ = A. Two pattern
concepts are partially ordered by (A1, d1) � (A2, d2) by A1 ⊆ A2 ⇔ d2 ⊑ d1.

Note that by its partial order, the set of all pattern concepts forms a lattice
structure. We denote the set of all pattern concepts by P(P). To obtain P(P),
we need to compute two functions (·)� and (·)⋄. For example, we can adopt the
AddIntent proposed in [12] and used in [8].

Episode Mining We briefly review episode mining based on [7]. Let E =
{1 . . . , m} ⊆ N be the set of events. We call a set S ⊆ E of events an event
set. An input of episode mining is a long sequence of event sets; an input event
sequence S on E is a finite sequence 〈S1, . . . , Sn〉 ∈ (2E)∗, where each set Si ⊆ E
is the i-th event set. For S of length n, we assume that Si = ∅ if i < 0 or i > n.

Episodes are labeled directed graphs (DAGs). An episode G is a triple (V, E, λ),
where V is the set of vertices, E is the set of directed edges, and λ is the la-
beling function from V and E to the set of labels, that is, E . Several classes of
episodes have been studied since episode mining is firstly introduced by Man-
nila et. al. [11]. We follow subclasses of episodes studied by Katoh et al. [7]. An

Pattern Structures for Understanding Episode Patterns 49

4

! " #$%&'()*+,'-)&./' " E

0%&'()*+,'-)&./'

$%&'()*+,'-)&./'! 1 #

1)*2.3/,'-)&./'

4 5%&'()*+,'-)&./'

! " 4

!
"

1

4

&'()*+,'-)&./'

/)*2.3/,'-)&./' !

"

1

4 #

Fig. 1. An example of episode studied in episode mining in [11] and [7].

example of episodes is illustrated in Figure 1. In designing pattern mining algo-
rithms, we need 1) a search space of patterns and a partial order for enumerating
patterns, and 2) interestingness measure to evaluate them. For episode mining,
we often adopt occurrences of episodes defined with windows.

Definition 1 (Windows). For a sequence S = 〈S1, . . . , Sn〉, an window W of
S is a contiguous subsequence 〈Si, · · · , Si+w−1〉 of length n, called width, for
some index i (−w + 1 ≤ i ≤ n) of S and a positive integer w ≥ 0.

Definition 2 (Embedding of Episodes). Let G = (V, E, λ) be an episode,
and W = 〈S1, . . . , Sw〉 be a window of width w. We say that G occurs in W if
there exists a mapping h : V → {1, . . . , w} satisfying 1) for all v ∈ V , h(v) ∈
Sh(x), and 2) for all (u, v) ∈ E with u 6= v, it holds that h(u) < h(v). The map
h is called an embedding of G into W , and it is denoted by G � W .

For an input event sequence S and a episode G, we say that G occurs at
position i of S if G � Wi, where Wi = 〈Si, . . . , Si+w−1〉 is the i-th window of
width w in S. We then call the index i an occurrence of G in S. The domain of
the occurrences is given by WS,w = {i | −w+1 ≤ i ≤ n}. In addition, WS,w(G)
is the occurrence window list of an episode G, defined by {−w +1 ≤ i ≤ n | G �
Wi}. Then we can define an interestingness measure frequency of episodes.

Definition 3 (Frequency of Episodes). The frequency of an episode G in S
and w, denoted by freqS,w(G), is defined by the number of windows of width w
containing G. That is, freqS,w(G) = |WS,w(G)|. For a threshold θ ≥ 1, a width
w and an input event sequence S, if freqS,w(G) ≥ θ, G is called θ-frequent on S.

The frequent episode mining problem is defined as follows: Let P be a class of
episodes. Given an input event sequence S, a width w ≥ 1, and a frequency
threshold θ ≥ 1, the problem is to find all θ-frequent episodes G belonging to
the class P. The simplest strategy of finding all θ-frequent episodes is traversing
P by using the anti-monotonicity of the frequency count freq(·). For details, we
would like to refer to both [7] and [11].

For our examples of classes, we introduce m-serial episodes and diamond
episodes. An m-serial episode over E is a sequence of events in the form of a1 7→
a2 7→ · · · 7→ am. A diamond episode over E is either 1) a 1-serial episode e ∈ E or
2) a proper diamond episode represented by a triple Q = 〈a, X, b〉 ∈ E × 2E × E ,
where a, b are events and X ⊆ E is an event set occurring after a and before

50 Keisuke Otaki, Madori Ikeda and Akihiro Yamamoto

5

b. For short, we write a diamond episode as a 7→ X 7→ b. On the one hand
definitions of episodes by graphs are much general, on the another hand classes
of episode patterns are often restricted.

Example 3 (Episodes). In Figure 1, we show some serial episodes; A 7→ B 7→ E,
A 7→ D 7→ E, B 7→ E, and C on the set of events E = {A, B, C, D, E}. All of
them are included in a diamond episode A 7→ {B, C, D} 7→ E.

We explain a merit of introducing pattern structures for summarization of
structured patterns. As we mentioned above, a common strategy adopted in pat-
tern mining is traversing the space P in a breadth-first manner with checking
some interestingness measure. When generating next candidates of frequent pat-
terns, algorithms always check a parent-child relation between two patterns. This
order is essential for pattern mining and we thus conjecture that this parent-
child relation used in pattern mining can be naturally adopted in constructing
a pattern structure for analyzing patterns only by introducing a similarity oper-
ation ⊓. After constructing a lattice, it would be helpful to analyze a set of all
patterns using it because they represent all patterns compactly.

A crucial problem of pattern structures is the computational complexity con-
cerning both ⊓ and ⊑. Our idea is to adopt trees of height 1 (also called stars
in Graph Theory). That is, we here assume that trees are expressive enough to
represent features of episodes. Our idea is similar that used in designing graph
kernels [14]1 and that is inspired by previous studies on pattern structures [2, 4].

3 Diamond Episode Pattern Structures

In the following, we focus on diamond episodes as our objects, and trees of height
1 as our descriptions. They have two special vertices; the source and the sink.
They can be regarded as important features for representing event transitions.
We generate rooted labeled trees from them by putting the node in the root of
a tree, and regarding neighbors as children of it. Since heights of all trees here
are 1, we can represent them by tuples without using explicit graph notations.

Definition 4 (Rooted Trees of Height 1). Let (E , ⊓E) be a meet semi-lattice
of event labels. A rooted labeled tree of height 1 is represented by a tuple 2

(e, C) ∈ E × 2E . We represent the set of all rooted labeled trees of height 1 by T.

Note that in (E , ⊓E), we assume that ⊓E compares labels based on our back-
ground knowledge. We need to take care that this meet semi-lattice (E , ⊓E) is
independent and different from a meet semi-lattice D of descriptions of a pattern
structure P. This operation ⊓E is also adopted when defining an embedding of
trees of height 1, that is, a partial order between trees defined as follows.

1 It intuitively generates a sequence of graphs by relabeling all vertices of a graph. One
focus on a label of a vertex v ∈ V (G) and sees labels LN G(v) of its neighbors NG(v).
For a tuple (lv,LN G(v)) for all vertices v ∈ V (G), we sort all labels lexicographically,
and we assign a new label according to its representation. Details are seen in [14].

2 On the viewpoint of graphs, this tuple (e, C) should represent a graph G = (V, E, λ)
of V = {0, 1, . . . , |C|}, E = {(0, i) | 1 ≤ i ≤ |C|}, λ(0) = e, {λ(i) | 1 ≤ i ≤ |C|} = C.

Pattern Structures for Understanding Episode Patterns 51

6

!

"

#

$

$

$

"

#

%
#

$

$

!

"#

"

$

%# $

&'()*+

G0",-+./&'0+

,+/123')&

!

δ(G0)

δ(G1)

",-+./&'0+ G1

&'()*+

,+/123')&

!

δ(G0) ⊓t δ(G1)

453+6-*'7.5)/,1-58-)''8

! $⊓E = 9

:+,+)56/;58/',-'<-*2/60)+,

$ "#

" %# $

$ "#

$

9

"#

=

=+7/>6588/*+-<')-+?+,8&

"

9

% $!

Fig. 2. An example of computations ⊓ of two trees of height 1.

Definition 5 (Partial Order on Trees). A tree t1 = (e1, C1) is a generalized
subtree of t2 = (e2, C2), denoted by t1 ⊑T t2, iff e1 ⊑E e2 and there exists an
injection mapping φ : C1 → C2 satisfying for all v ∈ C1, there exists φ(v) ∈ C2

satisfying v ⊑E φ(v), where ⊑E is the induced partial order by ⊓E .

For defining a similarity operator ⊓T between trees, this partial order ⊑T

is helpful because ⊓T is closely related to ⊑T in our scenario. Since all trees
here are height 1, this computation is easy to describe; For labels of root nodes,
a similarity operator is immediately given by using ⊓E . For their children, it
is implemented by using an idea of least general generalization (LGG), which
is used in Inductive Logic Programming [10], of two sets of labels. A practical
implementation of LGG depends on whether or not sets are multisets, but it is
computationally tractable. An example is seen in Figure 2.

We give formal definitions of δ and D. For a graph G = (V, E, λ), we denote
the neighbors of v ∈ V by NG(v). For some proper diamond episode pattern G,
the source vertex s ∈ V and the sink vertex t ∈ V , computed trees of height 1
corresponding s and t are defined as Ts = ({s} ∪ NG(s), {(s, u) | u ∈ NG(s)}, λ),
and Tt = ({t} ∪ NG(t), {(u, t) | u ∈ NG(t)}, λ), respectively. By using those
trees, δ(·) can be defined according to vertices s and t: If we see both Ts and
Tt, δ(G) = (Ts, Tt) and then ⊓T is adopted element-wise, and D is defined by
T×T. If we focus on either s or t, δ(G) = Ts or Tv, and we can use ⊓T directly
by assuming D = I.

Last we explain relations between our pattern structures and previous stud-
ies shortly. This partial order ⊑T is inspired from a generalized subgraph iso-
morphism [4] and a pattern structure for analyzing sequences [2]. We here give
another description of similarity operators based on definition used in [4, 9].

Definition 6 (Similarity Operation ⊓ based on [9]). The similarity op-
eration ⊓ is defined by the set of all maximal common subtrees based on the
generalized subtree isomorphism ⊑T ; For two trees s1 and s2 in T,

s1 ⊓ s2 ≡ {u | u ⊑T s1, s2, and ∀u′ ⊑T s1, s2 satisfying u 6⊑T u′}.

52 Keisuke Otaki, Madori Ikeda and Akihiro Yamamoto

7

!

"

#

$

"

%&'()*+,-(,&.,

#

"

!

$

#

$

/

"

/

$

!

"

#

!

$

"

$

##

!

$

""

!

#

!

$

#

"

#

/

$

#

!

"

#

$

"

#

/

$

/

#

"

!

$

/

#

"

!

#

$

"

/

$

"

/

$

##

"

,
0
,
&
)*
+,
)

/123'4,+*56*,'7+58,+

!

"

#

$

!

)73,

Fig. 3. An input S and two diamond episodes mined from S as examples.

Table 1. Numbers of proper diamond episodes and pattern concepts for w ∈ {3, 4, 5}
and M ∈ {100, 200, 300, 400, 500, 600, 700}. In the table below, DE and PDE means
Diamond Episodes and Proper Diamond Episodes, respectively.

M and # of pattern concepts

Window width w # of DE # of PDE 100 200 300 400 500 600 700

3 729 569 87 137 178 204 247 – –
4 927 767 74 136 179 225 281 316 336
5 935 775 71 137 187 272 290 313 342

Note that we can regard that our operator ⊓T is a special case of the similarity
operation ⊓ above. On the viewpoint of pattern structures, our trees of height
1 can be regarded as an example of projections from graphs into trees, studied
in [4, 9], such as both k-chains (paths on graphs of length k) and k-cycles.

4 Experiments and Discussion for Diamond Episodes

Data and Experiments We gathered data from MLB baseball logs, where a
system records all pitching and plays for all games in a season. We used what
types of balls are used in pitching, which can be represented by histograms per
batter. For a randomly selected game, we generated an input event sequence of
episode mining by transforming each histogram to a set of types of balls used
types of balls3. In forming (E , ⊓E), we let E be the set of types of balls, and define
⊓E naturally (See Example in Fig. 2). For this S, we applied a diamond episode
mining algorithm proposed by [7] and obtain a set of diamond episodes. The
algorithm have two parameters; the window size w and the frequency threshold
θ. We always set θ = 1 and varied w ∈ {3, 4, 5}. After generating a set G of
frequent proper diamond episodes, we sampled M ∈ {100, 200, . . . , 700} episodes
from G as a subset O of G (that is, satisfying |O| = M and O ⊆ G). We used O
as a set of objects in our pattern structure P. From it we computed all pattern
concepts P(P) based on our discussions in Section 3. In this experiments we set
δ(G) = Ts for a proper diamond episode G and its source vertex s.

3 In baseball games, pitchers throw many kinds of balls such as fast balls, cut balls,
curves, sinkers, etc. They are recorded together with its movements by MLB systems.

Pattern Structures for Understanding Episode Patterns 53

54 Keisuke Otaki, Madori Ikeda and Akihiro Yamamoto

9

representations of itemsets, and they are closely related to the closure operator
g ◦ f in FCA with (O, A, I), where O is the set of transaction identifiers and
A is the set of all items. The difficulty of closed patterns for complex data is
there are no common definitions of closure operators, where we usually use the
closeness with respect to the frequency. Here we assume that pattern concepts
are helpful in the same correspondence between closed itemsets and concepts.

To obtain some compact representations, we need to decide how to evaluate
each pattern. The problem here is how to deal with the wildcard ⋆ in descriptions.
When we obtain a concept (X, Y) for X ⊆ O, Y ⊆ A, this concept (X, Y)
corresponds to a rectangle on I, and there are no 0 entries in the sub-database
I ′ = {(x, y) ∈ I | x ∈ X, y ∈ Y } of I induced by (X, Y) because of its definitions.
If (X, Y) is not a concept, a rectangle r by (X ′, Y ′) contains a few 0 entries in
it. We denote the relative ratio of 1 entries in a rectangle r by (X ′, Y ′) as

r1(X
′, Y ′, I) = (1 − |{(x, y) 6∈ I | x ∈ X ′, y ∈ Y ′}|) (|X ′||Y ′|)−1

,

where 0 ≤ r1(X
′, Y ′, I) ≤ 1 and r1(X

′, Y ′, I) = 1 if (X ′, Y ′) is a concept. These
r1(X, Y, I), |X|, and |Y | are applicable for evaluating itemsets. If we only use the
cardinality |A| of a set A of objects, this equals to the support counts computed
in Iceberg concept lattices [15]. For a concept (X, Y) of a context K = (O, A, I),
we compute the support count supp(X, Y) = |g(Y)|/|O| and prune redundant
concepts by using some threshold. For formalizing evaluations of patterns, such
values are generalized by introducing a utility function u : P → R+. A typical
and well-studied utility function is, of course, the frequency count, or the area
function area(·) which evaluates the size of a rectangle (X, Y) [6].

Based on discussions above, if we can define a utility function u(·) for eval-
uating pattern concepts, a similar discussion for pattern concepts are possible;
choosing a few number of pattern concepts and constructing summary of pat-
terns with them. Of course, there are no simple way of giving such functions. We
try to introduce a simple and straightforward utility function uP (·) for pattern
concepts as a first step of developing pattern summarization via pattern concept
lattices. In this paper, we follow the idea used in tiling databases [6], where a
key criterion is given by area(·). We consider how to compute the value which
corresponds to the area in binary databases. To take into account the wildcard
⋆ used in descriptions, we define the following simple function. For d ∈ D, we let
s(d) and n(d) be the numbers of non wildcard and all vertices in a description
d, respectively. Note that if s(d) = n(d), d contains no wildcard labels. By using
these functions, we compute utility values as follows:

uP (A, d) = |A| · log (1 + s(d)) .

5.1 Experiments and Discussions

We compare results of ranking pattern concepts by 1) using only |A| (similar
to the Iceberg concept lattices), and 2) using uP (·) as a utility function. From
the list of pattern concepts generated in experiments of Section 4, we rank all

Pattern Structures for Understanding Episode Patterns 55

10

Table 2. Results of ranking pattern concepts from 750 episodes in w = 5.

Utility Top-5 mutually distinct descriptions of pattern concepts

|A| (⋆, {⋆}), (2, {⋆}), (0, {⋆}), (3, {⋆}), (1, {⋆})
uP (·) (⋆, {0, ⋆}), (⋆, {0, 2, 3}), (⋆, {0, 1, 2}), (⋆, {0, 1, 3}), (⋆, {1, 2, 3})

pattern concepts by using a utility function, and sort the list in an ascending
order, and compare two lists. We remove patterns appearing commonly in both
lists to highlight differences. We give our results in Table 2.

In the result with uP (·), larger descriptions appear with higher utility values
compared with those by |A|. We can see that by modifying terms concerning
⋆, results contain more informative nodes, which are labeled by non-wildcard
labels. Here we implicitly assume that descriptions contains less ⋆ would be
more useful for understanding data themselves. On this viewpoint, considering
two terms s(d) and n(d) for description d would be interesting and useful way
to design utility functions for pattern concepts. We conclude that the Iceberg
lattice based support counts are less effective if descriptions admit the wildcard
⋆ for pattern summarization problems.

Not only the simple computation in uP (A, d) used above, also many alter-
natives could be applicable for ranking. Some probabilistic methods such as the
minimum description length (MDL), information-theoretic criteria would be also
helpful to analyze our study more clearly. Since pattern structures have no ex-
plicit representations of binary cross tables, the difficulty lies on how to deal
with a meet semi-lattice (D, ⊓). For some pattern concept (A, d) and an object
o ∈ O, we say that (A, d) subsumes o if and only if d ⊑ δ(o). This subsump-
tion relation would be simple and helpful to evaluate concepts, but they does
not adopt any complex information concerning hierarchy of events, or distances
between two descriptions. In fact in the experiments, we always assume that all
events except ⋆ have the same weight and ⋆ is the minimum of all events. They
could be important to take into account similarity measures of events for more
developments of ranking methods of pattern concepts.

5.2 Related Work

There are several studies concerning our study. It is well-known that closed item-
sets correspond to maximal bipartite cliques on bipartite graphs constructed
from K = (O, A, I). Similarly, we sometimes deal with so called pseudo bipartite
cliques [16], where it holds that r1(X

′, Y ′, I) ≥ 1 − ε with a user-specified con-
stance ε. Obviously, pseudo bipartite cliques correspond to rectangles containing
a few 0. We can regard them as some summarization or approximation of closed
itemsets or concepts. Intuitively, if we use some pseudo bipartite cliques as sum-
marization, the value r1(X, Y, I) can be considered in evaluating (X, Y). Pseudo
bipartite cliques can be regarded as noisy tiles, which is an extension of tiles [6].

Another typical approach for summarization is clustering patterns [18, 1]. A
main problem there is how to interpret clusters or centroids, where we need to de-

56 Keisuke Otaki, Madori Ikeda and Akihiro Yamamoto

11

sign a similarity measure and a space in which we compute the similarity. On the
viewpoint of probabilistic models, there is an analysis via the maximum entropy
principle [3]. However they assume that entries in a database are independently
sampled, and thus we cannot apply those techniques to our setting.

6 Toward Generalizations for Bipartite Episodes

In this paper we assume that our descriptions by trees of height 1 are rich enough
to apply many classes of episode patterns. We here show how to apply our pattern
structure for other types of episodes, called bipartite episodes, as an example. An
episode G = (V, E, λ) is a a partial bipartite episode if 1) V = V1∪V2 for mutually
disjoint sets V1 and V2, 2) for every directed edge (x, y) ∈ E, (x, y) ∈ V1 × V2. If
E = V1×V2, an episode G is called a proper bipartite episode. Obviously, vertices
in a bipartite episode G are separated into V1 and V2, and we could regard them
as generalizations of the source vertex and the sink vertex of diamond episodes.
This indicates that the same way is applicable for bipartite episodes by defining
⊓ between sets of tress. Fortunately, [9] gives the definition ⊓ for sets of graphs.

{t1, . . . , tk} ⊓ {s1, . . . , sm} ≡ MAX⊑T

⋃

i,j

({ti} ⊓ {sj})

 ,

where MAX⊑T
(S) returns only maximal elements in S with respect to ⊑T . Since

our generalized subtree isomorphism is basically a special case of that for graphs,
we can also apply this meet operation. This example suggest that if we have some
background knowledge concerning a partition of V , it can be taken into account
for δ and (D, ⊓) in a similar manner of diamond and bipartite episodes.

7 Conclusions and Future Work

In this paper we propose a pattern structure for diamond episodes based on an
idea used in graph kernels and projections of pattern structures. Since we do not
directly compute graph matching operations we conjecture that our computation
could be efficient. With a slight modification of ⊓, our method is also applicable
for many classes of episodes, not only for diamond patterns as we mentioned
above. Based on our pattern structure, we discussed summarization by using
mined pattern concepts and show small examples and experimental results.

Since problems of this type are unsupervised and there is no common way of
obtaining good results and of evaluating whether or not the results are good. It
would be interesting to study more about this summarization problem based on
concept lattices by taking into account theoretical backgrounds such as proba-
bilistic distributions. In our future work, we try to analyze theoretical aspects
on summarization via pattern structures including the wildcard ⋆ and its op-
timization problem to obtain compact and interesting summarization of many
patterns based on our important merit of a partial order ⊑ between descriptions.

Pattern Structures for Understanding Episode Patterns 57

12

Acknowledgments

This work was supported by Grant-in-Aid for JSPS Fellows (26·4555) and JSPS
KAKENHI Grant Number 26280085.

References

1. Al Hasan, M., Chaoji, V., Salem, S., Besson, J., Zaki, M.: Origami: Mining rep-
resentative orthogonal graph patterns. In: Proc. of the 7th ICDM. pp. 153–162
(2007)

2. Buzmakov, A., Egho, E., Jay, N., Kuznetsov, S.O., Napoli, A., Räıssi, C.: The
representation of sequential patterns and their projections within Formal Concept
Analysis. In: Workshop Notes for LML (ECML/PKDD2013) (2013)

3. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Mining and Knowledge Discovery 23(3), 407–446
(2011)

4. Ganter, B., Kuznetsov, S.O.: Pattern structures and their projections. In: Proc. of
the 9th ICCS. pp. 129–142 (2001)

5. Ganter, B., Wille, R.: Formal concept analysis - mathematical foundations.
Springer (1999)

6. Geerts, F., Goethals, B., Mielik ainen, T.: Tiling databases. In: Proc. of the 7th
DS. pp. 278–289 (2004)

7. Katoh, T., Arimura, H., Hirata, K.: A polynomial-delay polynomial-space algo-
rithm for extracting frequent diamond episodes from event sequences. In: Proc. of
the 13th PAKDD. pp. 172–183. Springer Berlin Heidelberg (2009)

8. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting Numerical Pattern Mining
with Formal Concept Analysis. In: Proc. of the 24th IJCAI (2011)

9. Kuznetsov, S.O., Samokhin, M.V.: Learning closed sets of labeled graphs for chem-
ical applications. In: Proc. of the 15th ILP, pp. 190–208 (2005)

10. Lloyd, J.W.: Foundations of Logic Programming. Springer-Verlag New York, Inc.
11. Mannila, H., Toivonen, H., Inkeri Verkamo, A.: Discovery of frequent episodes in

event sequences. Data Mining and Knowledge Discovery 1(3), 259–289 (1997)
12. Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A New Incremental Algorithm for

Constructing Concept Lattices. In: Proc. of the 2nd ICFCA. pp. 372–385 (2004)
13. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-

sets for association rules. In: Prof. of the 7th ICDT. pp. 398–416 (1999)
14. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt,

K.M.: Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 12,
2539–2561 (2011)

15. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with titanic. Data & Knowledge Engineering 42(2), 189–222 (2002)

16. Uno, T.: An efficient algorithm for solving pseudo clique enumeration problem.
Algorithmica 56(1), 3–16 (Jan 2010)

17. Vreeken, J., van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Mining and Knowledge Discovery 23(1), 169–214 (2011)

18. Xin, D., Cheng, H., Yan, X., Han, J.: Extracting redundancy-aware top-k patterns.
In: Proc. of the 12th KDD. pp. 444–453. ACM (2006)

58 Keisuke Otaki, Madori Ikeda and Akihiro Yamamoto

