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Abstract. Biclustering numerical data tables consists in detecting par-
ticular and strong associations between both subsets of objects and at-
tributes. Such biclusters are interesting since they model the data as
local patterns. Whereas there exists several definitions of biclusters, de-
pending on the constraints they should respect, we focus in this paper on
biclusters of similar values on columns. There are several ad hoc methods
for mining such biclusters in the literature. We focus here on two aspects:
genericity and efficiency. We show that Formal Concept Analysis pro-
vides a mathematical framework to characterize them in several ways,
but also to compute them with existing and efficient algorithms. The
proposed methods, which rely on pattern structures and triadic concept
analysis, are experimented and compared on two different datasets.
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1 Introduction

Biclustering has attracted a lot of attention for many years now, as it was used in
an extensive way for mining biological data [7]. Given a data-table with objects
as rows and attributes as columns, the goal is to find “sub-tables”, or pairs of
both subsets of objects and attributes, such that the values in the subtables
respect well-defined constraints or maximize a given measure [17].

There exist several types of biclusters depending on the relation the values
should respect. For example, constant biclusters are subtables with equal val-
ues [12, 6, 17]. Biclusters with similar values on columns (BSVC) are subtables
where all values are pairwise similar for each column [4, 17]. The latter can also
be generalized to biclusters of similar values (BSV): any two values in the sub-
table are similar [2, 3, 12, 21]. Dozens of algorithms, mostly ad hoc, have been
proposed for computing the different types of biclusters. In this paper, we are
interested in possible extensions of the Formal Concept Analysis (FCA) for-
malism for achieving the problem of biclustering. This comes with two goals:
(i) formalizing and understanding biclusters formation and structure, and (ii)
reusing existing algorithms for genericity purposes.
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Actually, the present paper is in continuation with the work of the authors
on the use of pattern structures –an extension of FCA for mining complex data
[8, 12]– for discovering functional dependencies in a crisp and a fuzzy settings
[1], and as well on the adaptation of pattern structures to a specific biclustering
task: the discovery of biclusters of type BSV [6, 11]. Moreover, the biclustering
task is usually considered as a “‘two-dimensional” (2D) process where biclusters
are rectangles in a table verifying some prior constraints. It was one main idea
of [11] to transpose the problem in a “three-dimensional” setting by using and
adapting triadic concept analysis [16] to the biclustering task.

Here we follow the same line and we propose a new approach for discovering
biclusters in a numerical dataset where biclusters have “similar values” w.r.t.
their columns (type BSVC). This works is a new attempt to extend the capabil-
ities of FCA and of pattern structures, in dealing with the important problem of
biclustering. Actually, biclustering can be also considered in a (pure) numerical
setting, where it is sometimes called coclustering [18] and where kernel or spec-
tral methods are often used for achieving the task. Here we keep the discrete
setting and more precisely an FCA-based setting.

The rest of this paper is organized as follows. In Section 2 we formally in-
troduce the biclustering problem. Then, we recall in Section 3 the FCA basics
that are necessary for developing our three methods in Section 4. We experiment
with these methods and compare them by processing two real-world datasets in
Section 5 before concluding.

2 Problem Definition

We introduce the problem of mining biclusters of similar values on columns, or
simply biclusters when no confusion can be made. A numerical dataset is defined
as a many-valued context in which biclusters are denoted as pairs of object and
attribute subsets for which a particular similarity constraint holds.

Definition 1 (Many-valued context and numerical dataset). A many-
valued context consists in a quadruple (G,M,W, I) where G is a set of objects,
M a set of attributes, W a set of attribute values, and I ⊆ G×M×W a ternary
relation. An element (g,m,w) ∈ I, also written m(g) = w or g(m) = w, can
be interpreted as: w is the value taken by the attribute m for the object g. The
relation I is such that g(m) = w and g(m) = v implies w = v.

In the present work, W is a set of numbers and Knum = (G,M,W, I) denotes
a numerical dataset, i.e. a many-valued context where W is a set of numbers.

m1 m2 m3 m4

g1 1 2 2 8
g2 2 1 2 9
g3 2 1 1 2
g4 1 0 7 6
g5 6 6 6 7

Fig. 1. A numerical dataset

Example. A tabular representation of a numer-
ical dataset is given in Table 1: objects G =
{g1, g2, g3, g4, g5} are represented by rows while at-
tributes M = {m1,m2, m3,m4} are represented by
columns. W = {0, 1, 2, 6, 7, 8, 9} and we have for ex-
ample g2(m4) = 9.

244 Mehdi Kaytoue, Victor Codocedo, Jaume Baixeries and Amedeo Napoli



Definition 2 (Biclusters with similar values on columns). Given a nu-
merical dataset (G,M,W, I), a pair (A,B) (where A ⊆ G,B ⊆ M) is called a
bicluster of similar values on columns when the following statement holds:

∀g, h ∈ A,∀m ∈ B,m(g) 'θ m(h)

where 'θ is a similarity relation: ∀w1, w2 ∈ W, θ ∈ [0,max(W ) − min(W )],
w1 'θ w2 ⇐⇒ |w1 − w2| ≤ θ. A bicluster (A,B) is maximal if @g ∈ G\A such
that (A ∪ {g}, B) is a bicluster, and @m ∈ M\B such that (A,B ∪ {m}) is a
bicluster.

Example. In Table 1, with θ = 1, we have that (A,B) = ({g1, g2}, {m1,m2,m3})
is a bicluster. Indeed, consider each attribute of B separately: the values taken
by the objects A are pairwise similar. However, (A,B) is not maximal, since
we have that both (A ∪ {g3}, B) and (A,B ∪ {m4}) are also biclusters. Then,
({g1, g2, g3}, {m1,m2,m3}) and ({g1, g2}, {m1,m2,m3,m4}) are both maximal.

Problem (Biclustering). Given a numerical dataset (G,M,W, I) and a simi-
larity parameter θ, the goal of biclustering is to extract the set of all maximal
biclusters (A,B) respecting the similarity constraint.

Remark. It should be noticed that in the formal definition, the similarity pa-
rameter is the same for all attributes. It is possible however to use a different
parameter for each attribute without changing neither the problem definition or
its resolution. For real-world datasets, one can choose different similarity param-
eters θm (∀m ∈M), but also can normalize/scale the attribute domains and use
a single similarity parameter θ.

3 Basics on Formal Concept Analysis

In this paper, we show how our biclustering problem can be formalized and
answered in FCA in different ways: (i) using standard FCA [9], (ii) using pattern
structures [8], and (iii) using triadic concept analysis [16]. We recall below the
basics of each approach.

Dyadic Concept Analysis. Let G be a set of objects, M a set of attributes
and I ⊆ G ×M be a binary relation. The fact (g,m) ∈ I is interpreted as “g
has attribute m”. The two following derivation operators (·)′ are defined:

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,
B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

which define a Galois connection between the powersets of G and M . For A ⊆ G,
B ⊆M , a pair (A,B) such that A′ = B and B′ = A, is called a (formal) concept.
Concepts are partially ordered by (A1, B1) ≤ (A2, B2)⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1).
With respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (G,M, I). For a concept
(A,B) the set A is called the extent and the set B the intent of the concept.
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Triadic Concept Analysis. A triadic context is given by (G,M,B, Y ) where
G, M , and B are respectively called sets of objects, attributes and conditions,
and Y ⊆ G×M×B. The fact (g,m, b) ∈ Y is interpreted as the statement “Ob-
ject g has the attribute m under condition b”. A (triadic) concept of (G,M,B, Y )
is a triple (A1, A2, A3) with A1 ⊆ G, A2 ⊆ M and A3 ⊆ B satisfying the two
following statements: (i) A1×A2×A3 ⊆ Y , X1×X2×X3 ⊆ Y and (ii) A1 ⊆ X1,
A2 ⊆ X2 and A3 ⊆ X3 implies A1 = X1, A2 = X2 and A3 = X3. If (G,M,B, Y )
is represented by a three dimensional table, (i) means that a concept stands for
a 3-dimensional rectangle full of crosses while (ii) characterizes component-wise
maximality of concepts. For a triadic concept (A1, A2, A3), A1 is called the ex-
tent, A2 the intent and A3 the modus. To derive triadic concepts, two pairs of
derivation operators are defined. The reader can refer to [16] for their definitions
which are not necessary for the understanding of the present work.

Pattern Structures. Let G be a set of objects, let (D,u) be a meet-semi-
lattice of potential object descriptions and let δ : G −→ D be a mapping. Then
(G, (D,u), δ) is called a pattern structure. Elements of D are called patterns
and are ordered by a subsumption relation v such that given c, d ∈ D one has
c v d⇐⇒ cud = c. Within the pattern structure (G, (D,u), δ) we can define the
following derivation operators (·)�, given A ⊆ G and a description d ∈ (D,u):

A� =
l

g∈A
δ(g) d� = {g ∈ G|d v δ(g)}

These operators form a Galois connection between (℘(G),⊆) and (D,v). (Pat-
tern) concepts of (G, (D,u), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,u),
such that A� = d and A = d�. For a pattern concept (A, d), d is called a pattern
intent and is the common description of all objects in A, called pattern extent.
When partially ordered by (A1, d1) ≤ (A2, d2)⇔ A1 ⊆ A2 (⇔ d2 v d1), the set
of all concepts forms a complete lattice called a (pattern) concept lattice.

Computing Concepts and Concept Lattices. Processing a formal context
in order to generate its set of concepts can be achieved by various algorithms
(see [15] for a survey and a comparison, see also itemset mining [19]). For pro-
cessing pattern structures, such algorithms generally need minor adaptations.
Basically, one needs to override the code for (i) computing the intersection of
any two arbitrary descriptions, and (ii) test the ordering between two descrip-
tions. Processing a triadic context is however not so direct and can be done with
nested FCA algorithms [10] or dedicated data-mining algorithm [5].

Similarity relations in FCA. The notion of similarity can be formalized by a
tolerance relation: a symmetric, reflexive but not necessarily transitive relation.
The similarity relation 'θ used for defining biclusters of similar values is a toler-
ance. Given W a set of numbers, any maximal subset of pairwise similar values
is called a block of tolerance.

Definition 3. A binary relation T ⊆W ×W is called a tolerance relation if:
(i) ∀x ∈W xTx (reflexivity)
(ii) ∀x, y ∈W xTy → yTx (symmetry)
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Definition 4. Given a set W , a subset K ⊆ W , and a tolerance relation T on
W , K is a block of tolerance if:

(i) ∀x, y ∈ K xTy (pairwise similarity)
(ii) ∀z 6∈ K,∃u ∈ K ¬(zTu) (maximality)

It is shown that tolerance blocks can be obtained from the formal context of a
tolerance relation [14]. In the context (W,W,'θ), one can characterize all blocks
of tolerance K (and only them) as formal concepts (K,K).

4 Mining biclusters of similar values on columns in FCA

The basic notions of FCA of the previous section allow us now to answer our
biclustering problem in various ways with: (i) an original method using inter-
val pattern structure, (ii) a recently introduced method using partition pattern
structures [6], and (iii) an original method relying on triadic concept analysis.
We emphasize the genericity of FCA to answer a data mining problem.

4.1 Interval Pattern Structure Approach

For a dataset Knum = (G,M,W, I), an interval pattern structure (G, (D,u), δ)
is defined as follows [13]: the objects from G are described by vectors of intervals,
where each dimension gives a range of values for an attribute m ∈M (following
a canonical ordering of the dimensions, i.e. dimension i corresponds to attribute
mi ∈M). Then, for m ∈M , the semi-lattice of intervals (Dm,um) is given by:

Dm = {[w1, w2] | ∃g, h ∈ G s.t. m(g) = w1 and m(h) = w2}
[a, b] um [c, d] = [min(a, c),max(b, d)]

c um d = c ⇐⇒ c vm d

[a, b] vm [c, d] ⇐⇒ [c, d] ⊇ [a, b]

The description space (D,u) of the interval pattern structure is a product of
meet-semi-lattices (D,u) = ×m∈M (Dm,um) which is a semi-lattice.

Examples. In Table 1, ({g1, g2, g3}, 〈[1, 2], [1, 2], [1, 2], [2, 9]〉) is a pattern concept:
δ(g1) = 〈[1, 1], [2, 2], [2, 2], [8, 8]〉

{g1, g2, g3}� = δ(g1) u δ(g2) u δ(g3) = 〈[1, 2], [1, 2], [1, 2], [2, 9]〉
〈[1, 2], [1, 2], [1, 2], [8, 9]〉 v 〈[1, 2], [1, 2], [1, 2], [2, 9]〉

{g1, g2, g3}�� = {g1, g2, g3}
We now give the intuitive idea on how the interval pattern concept lattice can
be used to characterize the biclusters. Consider first the concept (A1, d1) =
({g1, g2}, 〈[1, 2], [1, 2], [1, 2], [8, 9]〉). Consider also a function attr : D →M which
returns for an interval pattern the set of attributes whose interval is not larger
than the θ parameter, for d = 〈[ai, bi]〉, i ∈ [1, |M |]: attr(d) = {mi ∈ M |ai 'θ
bi}. (A1, attr(d1)) = ({g1, g2}, {m1,m2,m3,m4}) is a maximal bicluster. Con-
sider the interval pattern concept (A2, d2) = ({g1, g2, g3}, 〈[1, 2], [1, 2], [1, 2], [2, 9]〉):
(A2, attr(d2)) = ({g1, g2, g3}, {m1,m2,m3}) is a maximal bicluster (with θ = 1).
This means that biclusters can be characterized thanks to pattern concepts.
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Proposition 1. Consider a numerical dataset (G,M,W, I) as an interval pat-
tern structure (G, (D,u), δ). For any maximal bicluster (A,B), there exists a
pattern concept (A, d) such that (A,B) = (A, attr(d)).

Proof. To ease reading, the proof is given in an appendix. ut

4.2 Partition pattern structure approach

A partition pattern structure is a pattern structure instance where the de-
scription space is given by a semi-lattice of partitions over a set X [2]. Formally,
we have (G, (D,u), δ) where: D = Part(X) and d1 u d2 =

⋃
pi ∩ pj where

pi, pj ⊆ X, pi ∈ d1, pj ∈ d2. The semi-lattice is actually a complete lattice of
set partitions in which the bottom element is not considered. In [1], we showed
that the definition of u, and equivalently v, needs a slight modification when

D = 22
K

, i.e. a description d ∈ D is a set of subsets of X, and they do cover X
(possibly with overlapping). In that case, we have that d1 ud2 = max(

⋃
pi ∩ pj)

where pi, pj ⊆ X, pi ∈ d1, pj ∈ d2 and max(.) returns the maximal sets w.r.t.
inclusion.

Now we show that such a pattern structure can be constructed from a nu-
merical dataset, and that the corresponding concepts allow to generate all max-
imal biclusters. From a numerical dataset (G,M,W, I), we build the structure

(M, (D,u), δ) where D = 22
G

. The description of an object4 m ∈M is given by:
δ(m) = {p1, p2, ...} where p1, p2, .. ⊆ G and:

m(g1) 'θ m(g2),∀g1, g2 ∈ pi (similarity)

@g3 ∈ G\pi with m(g3) 'θ m(gk),∀gk ∈ pi (maximality)⋃

i

pi = G (covering)

In other words, each original attribute m ∈M is described by a family of subsets
of G, where each one corresponds to a block of tolerance w.r.t. the values of
attribute m. Let (A, d = {pi}) be a partition pattern concept, it is easy to see
how the pairs bici = (pi, A) are biclusters with rows g ∈ pi and columns m ∈ A5.
While any bici = (pi, A) is a bicluster, it is not necessarily a maximal bicluster.
Nevertheless, maximal biclusters can be identified using the concept lattice.

Proposition 2. Consider a pattern concept (A, d = {pi}). The bicluster bici =
(pi, A) is maximal if there is no pattern concept (C, {pi, ...}) with A ⊆ C.

Proof. The proof to this proposition is very intuitive. Recall from Section 2 that
the bicluster (pi, A) is maximal if two conditions are met, namely @g ∈ G\pi
such that (pi ∪ {g}, A) is a bicluster and @m ∈M\A such that (pi, A ∪ {m}) is

4 Object in the pattern structure; attribute in the numerical dataset.
5 In order to keep consistency with the previous notation, biclusters are written in-

versely as partition pattern concepts.
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a bicluster, The first condition holds for bici given the maximality condition of
the tolerance block pi; The second follows from the proposition declaration. ut
Example. The numerical dataset (G,M,W, I) given in Table 1 can be turned
into a pattern structure as follows with θ = 1:

δ(m1) = {{g1, g2, g3, g4}{g5}} δ(m2) = {{g2, g3, g4}{g1, g2, g3}{g5}}
δ(m3) = {{g1, g2, g3}{g4, g5}} δ(m4) = {{g4, g5}{g1, g5}{g1, g2}{g3}}

Indeed, each component of a description is a maximal set of objects hav-
ing pairwise similar values for a given attribute. The pattern concept lattice is
given in Figure 2. We remark that (i) any concept corresponds to a biclus-
ter, (ii) some of them correspond to a maximal bicluster, and most impor-
tantly, (iii) any maximal bicluster can be found as a concept. For example,
from the concept (A1, d1) = ({m3,m4}, {{g1, g2}, {g4, g5}, {g3}}) we obtain the
following biclusters: bic1 = ({g1, g2}, {m3,m4}) and bic2 = ({g4, g5}, {m3,m4}).
Whereas bic2 is a maximal bicluster bic1 is not since we have that (A2, d2) =
({m1,m2,m3,m4}, {{g1, g2}, {g3}, {g4}, {g5}}) with (A2, d2) ≤ (A1, d1). In turn,
bic3 = ({g1, g2}, {m1,m2,m3,m4}) is a maximal bicluster.

Remark. It is noticeable that an equivalent formal context can be built. By
equivalent, we mean that the concept lattices produced by both structures are
isomorphic. To obtain this formal context, we use a slight modification of the data
transformation of [9] (pp. 92): (M,B2(G), I) st. (m, (g, h)) ∈ I ⇐⇒ m(g) 'θ
m(h). The concept lattice is equivalent to the pattern concept lattice [2], and
thus it can be used in the same way to get maximal biclusters. In our running
example, such context is given in Table 1, and its associated concept lattice is
given in Figure 2 (right), a lattice isomorphic to the one raised from the pattern
structure (left). The proof can be done in a similar manner as it is done in [2].

(g1, g2) (g1, g3) (g1, g4) (g1, g5) (g2, g3) (g2, g4) (g2, g5) (g3, g4) (g3, g5) (g4, g5)

m1 × × × × × ×
m2 × × × × ×
m3 × × × ×
m4 × ×

Table 1. Formal context

4.3 Triadic Concept Analysis Approach

We present another original result: any maximal bicluster of similar values is
characterized as a triadic concept. The triadic context is derived from the nu-
merical dataset by encoding the tolerance relation between the values.

Proposition 3. Given a numerical dataset (G,M,W, I), consider the derived
triadic context given by (M,G,G, Y ) s.t. (m, g1, g2) ∈ Y ⇐⇒ m(g1) 'θ m(g2).
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Fig. 2. Pattern concept lattice on the left side, concept lattice of the right side.

There is a one-to-one correspondence between the set of all maximal biclusters
(A,B), the set of all triadic concepts (B,A,A) of the derived context.

Proof. Consider a maximal bicluster (A,B). We have that ∀g, h ∈ A : m(g) 'θ
m(h) ⇐⇒ m ∈ B, if and only if (by the definition of Y ) (B,A,A) ⊆ Y . We now
take (B′, A′, A′) ⊆ Y such that B ⊆ B′ and A ⊆ A′. Since (A,B) is a maximal
bicluster, we have that for any pair of objects g, h ∈ A′ and m ∈ B′ such that
g(m) 'θ h(m), implies that g, h ∈ A and m ∈ B. Let (B,A,A) be a triadic
concept. We have that for any pair of objects g, h ∈ A and m ∈ B we have that
g(m) 'θ h(m), this is, that ∀g, h ∈ A : g(m) 'θ h(m) ⇐⇒ m ∈ B, which is
the alternative definition of maximal bicluster. ut

Example. Taking again θ = 1, the triadic context derived from the numerical
dataset from Table 1 is given in Table 2. An example of triadic concept is:
({m3,m2,m1}, {g1, g3, g2}, {g1, g2, g3}) which is in turn the maximal bicluster
({g1, g3, g2}, {m3,m2,m1}).

5 Experiments

We experiment with the different FCA methods introduced in the previous sec-
tion. We report preliminary results in two aspects: efficiency (running time) and
compactness (number of concepts) to discuss the strengths and weaknesses of
the different methods.

m1 g1 g2 g3 g4 g5
g1 × × × ×
g2 × × × ×
g3 × × × ×
g4 × × × ×
g5 ×

m2 g1 g2 g3 g4 g5
g1 × × ×
g2 × × × ×
g3 × × × ×
g4 × × ×
g5 ×

m3 g1 g2 g3 g4 g5
g1 × × ×
g2 × × ×
g3 × × ×
g4 × ×
g5 × ×

m4 g1 g2 g3 g4 g5
g1 × × ×
g2 × ×
g3 ×
g4 × ×
g5 × × ×

Table 2. Triadic context derived from Table 1 thanks to '1.
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Data and experimental settings. The first dataset, “Diagnosis”6, contains
120 objects with 8 attributes. The first attribute provides temperature informa-
tion of a given patient with a range [35.5, 41.5] (numerical). For this attribute
we used θ = 0.1 and then θ = 0.3. The other 7 attributes are binary (θ = 0).
The second dataset, “dataSample 1.txt”, is provided with the BiCat software7.
It contains 420 objects and 70 numerical attributes with range [−5.9, 6.7]. We
used θ = 0.05 for all attributes. We provide results in Table 3 for the three dif-
ferent FCA methods discussed in this article, namely interval pattern structure
(IPS), tolerance blocks/partition pattern structures (TBPS) and triadic concept
analysis (TCA). We also report on the use of standard FCA using the discretiza-
tion technique discussed at the end of Section 4.2 (FCA). We also discuss the
computing of clarified contexts, given that it can dramatically reduce the size
of the context while keeping the same concept lattice (FCA-CL). A context is
clarified when there exists neither two objects with the same description, or two
attributes shared by the same set of objects.

For the methods based on FCA and pattern structures (IPS, TBPS), we used
a C++ version of the AddIntent algorithm [20]8. No restrictions were imposed
over the size of the biclusters. The TCA method was implemented using Data-
Peeler [5]. All the experiments were performed using a Linux machine with
Intel Xeon E7 running at 2.67GHz with 1TB of RAM.
Discussion. Results in Table 3 show that for the Diagnosis dataset, the clar-
ified context using standard FCA (FCA-CL) is the best of the five methods
w.r.t. execution time while for the BicAt sample 1, the best is TCA. Times are
expressed as the sum of the time required to create the input representation
of the dataset for the corresponding technique and its execution. In the case
of FCA and FCA-CL, the pre-processing can be as high as the time required
for applying the AddIntent algorithm. However, for large datasets such as the
BicAt example, this times can be ignored. It is also worth noticing that the
pre-processing depends on the chosen θ value, hence for each different θ config-
uration, a new pre-processing task has to be executed. This is not the case for
interval and partition pattern structures the pre-processing of which is linear

6 http://archive.ics.uci.edu/ml/datasets/Contraceptive+Method+Choice
7 http://www.tik.ee.ethz.ch/sop/bicat/
8 https://code.google.com/p/sephirot/

Diagnosis BicAt sample 1

θ = 0.3 θ = 0.1 θ = 0.05

Technique Time [s] #Concepts Exec. Time [s] #Concepts Exec. Time [s] #Concepts
Preproc + Exec. Preproc + Exec. Preproc + Exec.

FCA 0.11 + 0.335 98 0.11 + 0.291 88 2.3 + 2,220 476,950
FCA-CL 0.11 + 0.02 98 0.11 + 0.011 88 2.3 + 2,220 476,950
TCA 0.04 + 33.3 3,322 0.04 + 31.34 2,127 3.17 + 360 741,421
IPS 0.011 + 0.303 928 0.001 + 0.178 301 0.02 + 2,340 722,442
TBPS 0.011 + 1.76 98 0.001 + 0.411 88 0.02 + 5,340 476,950

Table 3. Number of concepts and execution times (pre-processing + addIntent run)
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w.r.t. the number of objects (it is actually, just a change of format). We can
also appreciate a more compact representation of the biclusters by the use of
partition pattern structures (TBPS) and its formal context versions (FCA and
FCA-CL). While TBPS is the slowest of the five methods, it is also the cheapest
one in terms of the use of machine resources, more specifically RAM. TCA is the
more expensive method in terms of machine resources and data representation,
however this yields results faster. Interval pattern structures are in the middle
as a good trade-off of compactness and execution time.

For this initial experimentation we have not reported the number of maximal
biclusters nor the bicluster extraction algorithms that can be implemented for
each different technique, but only in the FCA techniques themselves. Regarding
the number of maximal biclusters, this is the same for each technique since
all of them are bicluster enumeration techniques, i.e. all possible biclusters are
extracted. Hence, the difference among techniques is not given by the number
of maximal biclusters extracted, but by the number of formal concepts found
and their post-processing complexity to extract the maximal biclusters from
them. In general, it is easy to observe from Propositions 1, 2 and 3 that the
post-processing of TCA is linear w.r.t. the number of triadic concepts found,
while for TPS is linear w.r.t. the number of interval pattern concepts times the
number of columns of the numerical dataset squared and for TBPS is linear
w.r.t. the number of super-sub concept relations in the tolerance block pattern
concept lattice. Nevertheless, different strategies for bicluster extraction can be
implemented for each technique rendering the comparison unfair. For example,
in [6] an optimization is proposed regarding biclustering using partition pattern
structures (which can be easily adapted to TBPS) which cuts in half its execution
time by breaking the structure of the lattice. Similar strategies for IPS and TCA
could also be implemented but are still a matter of research.

6 Conclusion

Biclustering is an important data analysis task that is used in several appli-
cations such as transcriptome analysis in biology and for the design of recom-
mender systems. Biclustering methods produce a collection of local patterns that
are easier to interpret than a global model. There are several types of biclus-
ters and corresponding algorithms, ad hoc most of the time. In this paper, our
main contribution shows how the biclusters of similar values on columns can be
characterized or generated from formal concepts, pattern concepts and triadic
concepts. Bringing back this problem of biclustering into formal concept anal-
ysis settings allows the usage of existing and efficient algorithms without any
modifications. However, and this is among the perspectives of research, several
optimizations can be made. For example, with the triadic method, one should
not generate both concepts (A,B,C) and (A,C,B): they are redundant since
only concepts with B = C correspond to maximal biclusters.
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7 Appendix: Proof of proposition 1

We introduce notations, before to recall and prove Proposition 1 that relates
maximal biclusters to interval pattern concepts of a pattern structure. The in-
tuition lies in the relation between the set of attributes M of (G,M,W, I)) in an
interval pattern structure (G, (D,u), δ). Let d = 〈[a1, b1], [a2, b2], . . . , [an, bn]〉 ∈
D be a pattern interval in an interval pattern structure (G, (D,u), δ), where
|M | = n. For any mi ∈M , we define: d(mi) = [ai, bi]. and |d(mi)| = |ai − bi|.
Definition 5. Let d be a pattern in an interval pattern structure (G, (D,u), δ).
The function attr : D 7→M is defined as: attr(d) = {m ∈M | |d(m)| ≤ θ}.
Definition 6. Let A ⊆ G be a set of objects and m ∈ M an attribute. We
define: A(m) = {g(m) | g ∈ B}. For instance, in Table 1, if A = {g1, g2, g3},
then, A(m4) = {2, 8, 9}.
Proposition 4. For A ⊆ G, we have that, for all mi ∈M :

A� = 〈[min(A(m1)),max(A(m1))], . . . , [min(A(mn)),max(A(mn))]〉
Proof. Since the operation u is associative and commutative, we have that

A� =
l

gi∈A
gi = 〈[min(A(m1)),max(A(m1))], . . . , [min(A(mn)),max(A(mn))]〉

ut
Now we reformulate and prove the Proposition 1.

Proposition 5. Consider a numerical dataset (G,M,W, I) as an interval pat-
tern structure (G, (D,u), δ). For any maximal bicluster (A,B), we define: d =
A�. Then: 1. B = attr(d) and 2. (A,D) is a pattern concept in (G, (D,u), δ).

Proof. 1. B = attr(d). We prove that m ∈ attr(b) ↔ m ∈ B. Since B = A�,
then, by the definition of maximal bicluster we have that ∀m ∈ M : m ∈
B ↔ |A(m)| ≤ θ, if and only if |min(A(m)) −max(A(m))| ≤ θ if and only
if (by the definition of d) m ∈ attr(d). ut

2. We need to prove that A = d� and that A� = d. A� = d holds by the
definition of d. As for A = d�, we take g ∈ d�, which means that ∀m ∈
M : g(m) ∈ d(m), also if m ∈ B, which implies that g ∈ A by definition of
maximal bicluster.
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