
A Collaborative Approach for FCA-Based
Knowledge Extraction

My Thao Tang and Yannick Toussaint

Loria-Campus Scientifique,
BP 239 - 54506 Vandoeuvre-les-Nancy Cedex, France

{My-Thao.Tang,Yannick.Toussaint}@loria.fr

Abstract. In this paper, we propose an approach for an FCA-based
knowledge extraction process relying on the collaboration between hu-
mans and machines. Evaluation of the results is performed on the lattice
by experts through an interactive process where they may specify their
wishes for changes using a set of predefined operations. Thus, the system
then may suggest several strategies to reach their goal. In such an inter-
active and iterative process, the system converges towards a knowledge
model close to the experts’ needs. We illustrate the process on a small
preliminary experiment.

Keywords: Formal Concept Analysis, Knowledge Extraction, Expert
Interaction

1 Introduction

Several approaches ([1–4]) showed how powerful is Formal Concept Analysis
(FCA) ([5]) for knowledge modelling and ontology design, and the lattice is
usually considered as the knowledge model. This paper focuses on providing do-
main experts with capabilities to control and customize the lattice using retro-
engineering operations. Our approach is motivated by a desire of keeping a trace
between text sources and concepts of the resulting ontology. Objects and prop-
erties in texts are annotated and used to build the formal context. Annotations
and the lattice evolved simultaneously thanks to retro-engineering. In this way,
we can keep a trace between the linguistic level and the conceptual level making
one two separated processes in literature, namely semantic annotation which
identifies concepts from an ontology in texts and ontology building which
builds concepts from texts.

FCA is a bottom-up process which builds concepts from a set of instances
of objects and properties (the formal context). To improve the lattice and to
make it closer to expert needs, we want to define an iterative and interactive
process where experts are asked, at each loop, to evaluate the “quality” of the
concepts. Unfortunately, in Knowledge Engineering, building ontology is not a
straightforward process and usually results from trial and error process. There
are several reasons for experts to ask for changes in the lattice: (1) there may
be noise in resources or in the information extraction processes and thus, some

c© Manuel Ojeda-Aciego, Jan Outrata (Eds.): CLA 2013, pp. 281–286,
ISBN 978–2–7466–6566–8, Laboratory L3i, University of La Rochelle, 2013.

concepts result from this noise, (2) experts are not satisfied with the resulting
knowledge model and wish it to be more in accordance with their needs, i.e. the
application that will use the knowledge model.

The rest of the paper is structured as follows. Firstly, section 2 explains
how the system and experts collaborate in building and changing the lattice,
illustrates the approach by removing a concept from a lattice. Next, section 3
presents experimental results. Finally, section 4 concludes with a summary and
draws perspectives.

2 Collaboration for Changing A Lattice

In our approach, experts do not have access to the formal context; they can
browse concepts, run through subsumption paths, look at extents and intents of
concepts. Then, they express their wishes to change the lattice using operations.
An operation on the lattice is a kind of retro-engineering: experts select an
operation on the lattice (ex: remove this concept), the system assesses the impact
of the change, suggests different strategies and then, for the chosen strategy,
calculates what to change in data for the new lattice to meet the requirements.
The lattice is then built accordingly. Experts repeat the process until they reach
an agreement between the model and their knowledge.

2.1 Defining Operations on a Lattice

We list basic changes on a lattice to add or remove one element from the lattice
(Table 1). There could be more complex operations such as merging two concepts
into one, splitting one concept into two sub-concepts, creating a common concept
for a set of concepts ... For each operation, we need to define an algorithm to
compute the set of possible strategies to perform the change, to identify related
changes in the lattice, to rank them according to a cost function and to keep a
trace in a history. Adding or removing objects or properties in a formal context
motivated the development of incremental algorithms to update a lattice [6–
9]. Concept removing is somehow complex: several strategies are possible and
impacts on other concepts in the lattice (side effects). We detail this operation
to explain our approach in the next part.

2.2 Removing a Concept from a Lattice

Removing a concept while keeping the lattice structure means moving it down
to one of its children or up to one of its parents. These solutions correspond to
what we call different strategies.

Strategy 1 moves concept C down to one of its children, Cchild. The relation
I of the formal context should be modified to I∗ as follows:

I∗ = I ∪ {(g,m) : m ∈ {Intent(Cchild) \ Intent(C)}, g ∈ {Extent(C) \
Extent(Cchild), gIm}.

282 My Thao Tang and Yannick Toussaint

Add Remove

Object Add an object to a lattice Remove an object from a lattice
Add an object to a concept Remove an object from a concept

Attribute Add an attribute to a lattice Remove an attribute from a lattice
Add an attribute to a concept Remove an attribute from a concept
Add an attribute to an object Remove an attribute from an object

Concept Add a concept to a lattice Remove a concept from a lattice
Add a super concept to a concept Remove a super concept from a concept
Add a sub concept to a concept Remove a sub concept from a concept

Table 1: Basic changes in a lattice.

Strategies NOMC NODC NONC

1.1 Move c4 down to c7 2 2 2
1.2 Move c4 down to c9 2 2 2
2.1 Move c4 up to c0 0 3 0

Table 2: Strategies for removing concept c4 associated with the number of modified
concepts (NOMC), the number of deleted concepts (NODC) and the number of new
concepts (NONC) between the current lattice and the new one.

Strategy 2 moves concept C up to one of its parents, Cparent. The relation I
of the formal context should be modified to I∗ as follows:

I∗ = I \{(g,m) : m ∈ {Intent(C)\Intent(Cparent)}, g ∈ {Extent(C)}, gIm}.

Table 2 shows an example of strategies for removing concept c4 from the
initial lattice given in Fig. 1. Here, we have three strategies, two for moving
c4 down and one for moving c4 up. In strategy 1.1, c4 = ({F, HD}, {CoWi D})
and c7 = ({F}, {Ca RAS, CoWi D}). To move concept c4 down to concept c7, the
attribute in set {Intent(c7) \ Intent(c4)} = {Ca RAS} is added to the object in
set {Extent(c4)\Extent(c7)} = {HD}. Similarly, in strategy 2.1, to move concept
c4 up to concept c0 with Intent(c0) = ∅, the attribute CoWi D is removed from
the objects in set {F, HD}.

We benefit from incremental algorithms that have been implemented to build
lattices ([6], [8]) not only to avoid complete recalculation of the lattice but also
for identifying the different possible strategies to perform a given change in the
current lattice. Incremental algorithms, at the ith step, produce the concept set
or diagram graph for i first objects of the context. The new object i + 1th is
dynamically added by modifying the existing lattice without recomputing the
whole lattice from scratch. ([8])

We illustrate our algorithm on the operation of moving concept c4 down
(Strategy 1). In Strategy 1, the set of objects and the set of properties of the
formal context remain unchanged. Only the I relation is enriched: A new closed
set (Extent(C), Intent(Cchild)) becomes a formal concept of the new lattice L∗.

From the new closed set (Extent(C), Intent(Cchild)) and the existing lattice
L, we generate the new lattice L∗ by identifying the categories of concepts. The
new lattice is obtained from the existing lattice by taking, deleting or modifying
some concepts and creating new concepts. Thus, concepts are classified into four

A Collaborative Approach for FCA-Based Knowledge Extraction 283

Deleted

Deleted

Modified

 Modified/Destructor New

New/Destructor

The initial lattice The resulting lattice

Fig. 1: The initial lattice and the resulting lattice after removing concept c4 according
to the strategy moving concept c4 down to concept c7.

categories, old concepts, deleted concepts, modified concepts and new concepts
as follows. Let C be a concept in L∗:
– C is an old concept if there exists a concept in L that has the same extent

and intent to C,
– C is a modified concept if there exists a concept in L that has the same

intent to Intent(C) but the extent is different from Extent(C),
– C is a new concept if Intent(C) doesn’t exist in L,
– C in L is a deleted concept if Intent(C) doesn’t exist in L∗.

Moreover, we identify destructors of a concept. A destructor is a concept
that a deleted concept will jump to. Thus links to the deleted concepts should be
reported to any destructors.

Fig. 1 shows an example of removing concept c4 according to the strategy
moving it down to concept c7. In this example, two concepts, c4 and c9, in the
initial lattice, are deleted; two concepts, c2 and c7, are modified, adding the object
HD to their extent; two new concepts, c11 and c12, are also created. Moreover,
concept c7 is destructor of the deleted concept c4 and concept c12 is destructor
of the deleted concept c9.

The algorithm calculating the new lattice is based on the fundamental prop-
erty of lattices ([10]). For any closed set (X,X ′) in the lattice:
X ′ = f(X) =

⋂
x∈X

f({x}) and X = g(X ′) =
⋂

x′∈X′
g({x′})

Moreover, for any set of f(x) (resp. g({x′})), their intersection should be in the
lattice.

The main process of the algorithm is to update the set of intersections of
extents. We perform a top-down traversal of the lattice L to identify whether
a concept is old, modified or deleted, to create new concepts and to keep the
information of destructors.

Thanks to the categories of concepts, the resulting lattice can be calculated
and we can keep a trace from the previous lattice. By this way, we can know the
impact of a change on the lattice (lists of modified, deleted and new concepts).

284 My Thao Tang and Yannick Toussaint

Finally, all the strategies are suggested to the expert with their impacts (Table
2) so that the expert can consider choosing one strategy. Once the expert makes
a choice, the system will update the lattice accordingly.

3 Experiment of Removing A Concept

We experimented our approach for extracting knowledge from a real text corpus
of Fibromuscular Dysplasia extracted from PubMed1. The corpus consists of
400 texts.

In the preprocessing step, we used SemRep ([11]) to annotate the texts. 2402
annotation objects were identified from the corpus, of which only 668 objects
are shown in the right or left side of a triplet relationship and 481 objects on the
right side. 36 different relationships are identified in these texts. Given an an-
notation (object1, relationship, object2), we consider object1 as an object
and the name of the relation is concatenated with object2 to become a binary
attribute of object1. For example, Fibromuscular Dysplasia is an object and
ISA Disease is one of its attributes. SemRep annotation process can be noisy
but, of course, no automatic tool is perfect. Moreover, any annotation process
could annotate the texts, including manual annotation. This is one of our goals
to take the advantage of expert interaction in the construction of the knowledge
model.

Next, we built a Java script to transform the set annotations into a formal
context. The lattice was produced by Galicia2 and exported as the XML doc-
ument. The context built from our corpus contains 481 objects, 545 attributes
formed by the association of the relationship of the object with which it relates.
The lattice contains 523 concepts and the longest path from the Top to the
Bottom is 7. It is not so large for analyzing.

Then, we implemented a system with operation removing a concept from
a lattice. When an expert, during the evaluation phase, asks for removing a
concept, the system suggests a list of strategies and makes explicit their impacts
on the lattice (lists of modified, deleted and new concepts) to the expert. Once
the expert chooses one strategy, the system will update the lattice accordingly.

The required time for the expert to remove concepts has not yet been eval-
uated. Our experience shows that a judicious choice of a strategy in order to
remove concepts has a strong impact on the speed of convergence towards a
satisfactory knowledge model.

4 Conclusion and Perspective

We presented a collaborative approach for FCA-based knowledge extraction. Our
study shows how domain experts and machines can collaborate in building and
changing a lattice. The system handles changes in a lattice and keeps a trace

1 http://www.ncbi.nlm.nih.gov/pubmed
2 http://sourceforge.net/projects/galicia/

A Collaborative Approach for FCA-Based Knowledge Extraction 285

from the previous lattice. In that way, experts know the impact of a change.
Our iterative and interactive approach takes advantage from FCA and reduces
limitations due to the use of a formal method to model a complex cognitive
process.

This approach opens several perspectives. We can do more to help the expert.
Refining the cost function associated to changes can make easier the choice
of one strategy. Tagging concepts that the expert agrees with and wants to
keep unchanged all along the process could reduce the number of the suggested
strategies. Performing several changes at once needs also more investigations.

References

1. Bendaoud, R., Napoli, A., Toussaint, Y.: Formal concept analysis: A unified frame-
work for building and refining ontologies. In Gangemi, A., Euzenat, J., eds.:
EKAW. Volume 5268 of Lecture Notes in Computer Science., Springer (2008) 156–
171

2. Obitko, M., Snásel, V., Smid, J.: Ontology design with formal concept analysis.
In: Proceedings of the CLA 2004 International Workshop on Concept Lattices and
their Applications, Ostrava, Czech Republic, September 23-24, 2004. (2004)

3. Cimiano, P., Völker, J.: Text2onto - a framework for ontology learning and data-
driven change discovery. In Springer, ed.: Proceedings of Natural Language Pro-
cessing and Information Systems (NLDB 2005). Number 3513 in Lecture Notes in
Computer Science (LNCS) (June 2005) 227–238

4. Huchard, M., Napoli, A., Rouane, M.H., Valtchev, P.: A proposal for combining
formal concept analysis and description logics for mining relational data. In: pro-
ceeding of the 5th International Conference Formal Concept Analysis (ICFCA’07),
Clermond-Ferrand, France (2007)

5. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer (1999)

6. Godin, R., Missaoui, R., Alaoui, H.: Incremental concept formation algorithms
based on Galois (concept) lattices. Computational Intelligence 11(2) (May 1995)
246–267

7. Valtchev, P., Missaoui, R.: Building galois (concept) lattices from parts: General-
izing the incremental approach. In Delugach, H., Stumme, G., eds.: Proceedings
of the ICCS 2001. Volume 2120 of LNCS., Springer Verlag (2001) 290–303

8. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gen-
erating concept lattices. J. Exp. Theor. Artif. Intell. 14(2-3) (2002) 189–216

9. Merwe, D., Obiedkov, S., Kourie, D.: Addintent: A new incremental algorithm for
constructing concept lattices. In Eklund, P., ed.: Concept Lattices. Volume 2961 of
Lecture Notes in Computer Science. Springer, Berlin/Heidelberg (2004) 205–206

10. Barbut, M., Monjardet, B.: Ordre et classification, Algèbre et combinatoire. Ha-
chette, Paris (1970)

11. Rindflesch, T.C., Fiszman, M.: The interaction of domain knowledge and linguistic
structure in natural language processing: Interpreting hypernymic propositions in
biomedical text. Journal of Biomedical Informatics 36(6) (2003) 462–477

286 My Thao Tang and Yannick Toussaint

