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Abstract. In this paper we show the results of the experimental com-
parison of five triclustering algorithms on real-world and synthetic data
wrt. resource efficiency and 4 quality measures. One of the algorithms,
the OAC-triclustering based on prime operators, is presented first time
in this paper. Interpretation of results for real-world datasets is provided.
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1 Introduction

Recently analysis of triadic data attracts more and more attention in Data Min-
ing community [1,2,3,4,5]. One particular example is mining of so-called folk-
sonomies, structures composed by three sets: users, objects and tags. One of
the first attempts of such an analysis[1] was done within the framework of For-
mal Concept Analysis (FCA) [6], namely in Triadic Formal Concept Analysis
(TCA) [7]. Triclustering methods, which are objects of our study, allow one to
simultaneously discover three-component homogeneous groups in the considered
three-sets. For example, these triclusters can be used for community detection
[8] and recommender algorithms [9]. As a consequence, we would like to investi-
gate peculiarities and reveal advantages and drawbacks of various triclustering
approaches to choose the optimal one depending on the task.

In this paper we compare the following triclustering methods: object-attribute-
condition triclustering (2 modifications including new one) [10,11], TriBox [2],
spectral triclustering [11] and Trias algorithm [1]. Even though there are some
recent efficient [12] and even more general algorithms than Trias [13], it is
well-known to the FCA community and sometimes outperforms its competitors
[12]. Moreover, the aim of the paper is not in comparison of different algorithms
for triadic formal concepts generation, but it is rather in comparison of the
original patterns with their various approximations (triclusters) in terms of the
introduced quality measures. We also suggest investigating different matrix de-
composition approaches, e.g. Boolean ones [3,4], in a further study; note that
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Boolean matrix factorization can be considered as an approach to the reduction
of the number of the resulting triconcepts.

The rest of the paper is organised as follows. In section 2 we give main
definitions and describe the triclustering methods selected for the comparison.
Section 3 describes all the experiments and their results on real and synthetic
data along with specially introduced quality measures. Section 4 concludes the
paper and indicates some further research direction.

2 Triclustering models and methods

Object-attribute-condition triclustering (OAC-triclustering) is based on Formal
Concept Analysis [6] and its triadic extension, Triadic Formal Concept Anal-
ysis (TCA) [7]. In this paper we consider 2 types of OAC-triclustering: box
operator based (box OAC-triclustering) [10], and prime operator based (prime
OAC-triclustering). The latter is introduced in this paper. The set of triclusters
is generated one by one and complete enumeration strategy is used.

First, we recall some basic notions of Formal Concept Analysis (FCA) [6].
Let G and M be sets, called the set of objects and attributes, respectively, and
let I be a relation I ⊆ G ×M : for g ∈ G, m ∈ M , gIm holds iff the object
g has the attribute m. The triple K = (G,M, I) is called a (formal) context. If
A ⊆ G, B ⊆M are arbitrary subsets, then the Galois connection is given by the
following derivation operators:

A′ = {m ∈M | gIm for all g ∈ A},
B′ = {g ∈ G | gIm for all m ∈ B}. (1)

The pair (A,B), where A ⊆ G, B ⊆ M , A′ = B, and B′ = A is called a
(formal) concept (of the context K) with extent A and intent B (in this case we
have also A′′ = A and B′′ = B).

The concepts, ordered by (A1, B1) ≥ (A2, B2) ⇐⇒ A1 ⊇ A2 form a com-
plete lattice, called the concept lattice B(G,M, I).

2.1 Object-attribute-condition triclustering

Here let us define the box operators and describe box OAC-triclustering. We
use a slightly different introduction of the main TCA notions because of their
further technical usage.

Let K = (G,M,B, I) be a triadic context, where G, M , and B are sets, and
I is a ternary relation: I ⊆ G×M ×B. In addition to set of objects, G, and set
of attributes, M , we have B, a set of conditions.

Derivation (prime) operators for a triple (g̃, m̃, b̃) ∈ I from triadic context K
can be defined as follows:

g̃′ := { (m, b) | (g̃,m, b) ∈ I} (2)
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Fig. 1. g addition condition

(g̃, m̃)′ := { b | (g̃, m̃, b) ∈ I} (3)

m̃′, b̃′, (g̃, b̃)′, (m̃, b̃)′ prime operators can be defined the same way.

Now for a triple (g̃, m̃, b̃) ∈ I let us define box operator g̃� (m̃� and b̃� are
introduced in the same way):

g̃� := { g | ∃m(g,m) ∈ b̃′ ∨ ∃b(g, b) ∈ m̃′} (4)

Definition 1. Suppose K = (G,M,B, I) is a triadic context. For a triple (g,m, b) ∈
I a triple T = (g�,m�, b�) is called a box operator based OAC-tricluster. Tra-
ditionally, its components are respectively called extent, intent, and modus.

The density of a tricluster T = (X,Y, Z) is defined as the fraction of all
triples of I in X × Y × Z:

ρ(T ) :=
|I ∩ (X × Y × Z)|
|X||Y ||Z| (5)

Definition 2. The tricluster T is called dense iff its density is not less than
some predefined threshold, i.e. ρ(T ) ≥ ρmin.

Let us elaborate on the structure of box operator based triclusters. Suppose
K = (G,M,B, I) is a triadic context, and the triple (g̃, m̃, b̃) ∈ I is considered.
Then object g will be added to g̃� iff {(g, m̃, b) | b ∈ B ∧ (g, m̃, b) ∈ I} 6= ∅ ∨
{(g,m, b̃) |m ∈M ∧(g,m, b̃) ∈ I} 6= ∅. It is clear that this condition is equivalent
to the one in eq. (4), and can be easily illustrated (Fig. 1): if at list one of the
elements from “grey” cells is an element of I, then g is added to g̃�.

The idea of box OAC-triclustering is to enumerate all triples of the ternary
relation I for a context K generating a box operator based tricluster for each.
If generated tricluster T was not added to the set of all triclusters T on previ-
ous steps, then T is added to T . It is possible to implement hash-fuctions for
triclusters in order to significantly optimize computational time by simplifying
the comparison of triclusters. Also a minimal density threshold can be used.

Prime OAC-triclustering extends the biclustering method from [14] to
the triadic case. It uses prime operators (eq. 3) to generate triclusters.
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Fig. 2. Prime operator based tricluster structure

Definition 3. Suppose K = (G,M,B, I) is a triadic context. For a triple (g,m, b) ∈
I a triple T = ((m, b)′, (g, b)′, (g,m)′) is called a prime operator based OAC-
tricluster. Its components are called respectively extent, intent, and modus.

Prime based OAC-triclusters are more dense than box operator based ones.
Their structure is illustrated on Fig. 2: every element corresponding to the “grey”
cell is an element of I. Thus, prime operator based OAC-triclusters in a three-
dimensional matrix form contain a cross-like structure of ones.

It may also be useful to implement hash functions for triclusters.

Algorithm 1 Algorithm for prime OAC-triclustering.

Input: K = (G,M,B, I) — tricontext;
ρmin — density threshold

Output: T = {T = (X,Y, Z)}
1: T := ∅
2: for all (g,m) : g ∈ G,m ∈M do
3: PrimesObjAttr[g,m] = (g,m)′

4: end for
5: for all (g, b) : g ∈ G,b ∈ B do
6: PrimesObjCond[g, b] = (g, b)′

7: end for
8: for all (m, b) : m ∈M ,b ∈ B do
9: PrimesAttrCond[m, b] = (m, b)′

10: end for
11: for all (g,m, b) ∈ I do
12: T = (PrimesAttrCond[m, b], P rimesObjCond[g, b], P rimesObjAttr[g,m])
13: Tkey = hash(T )
14: if Tkey 6∈ T .keys ∧ ρ(T ) ≥ ρmin then
15: T [Tkey] := T
16: end if
17: end for
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2.2 TriBox method

The TriBox method [2] implements an optimization approach in tricluster gen-
eration. Suppose K = (G,M,B, I) is a triadic context. The idea is to select
some triple of I, take it for the initial tricluster, and then to modify its ex-
tent, intent, and modus so that they covered a significant part of the context
while maintaining high density. Thus, TriBox aims at finding a set of triclusters
T = {T = (X,Y, Z)} that maximize the criterion 6. The resulting triclusters
compose locally optimal solution for the trade-off problem between the density
and the volume of various possible triclusters.

f(T ) = ρ(T )2|X||Y ||Z| (6)

Once again, hash-functions for triclusters may be used for optimizations.

2.3 Spectral triclustering method

Spectral triclustering method [11] is based on the graph partition problem. The
idea is to represent the given triadic context as a tripartite graph and then
recursively divide it. To find an optimal partitioning spectral clustering uses the
second minimal eigenvector of the Laplacian matrix.

Let us elaborate on this technique. Suppose K = (G,M,B, I) is a triadic
context First we need to transform K into tripartite graph Γ = 〈V,E〉. Since I
is a ternary relation it is only possible to represent K as a tripartite hypergraph
without the loss of information. The following transformation technique is con-
sidered: V := G tM t B, for each triple (g,m, b) ∈ I edges (g,m), (g, b) and
(m, b) are added to E to form an undirected non-weighted graph. As the result
some additional triples will be added to I after inverse transformation. Still it
is clear that these triples will be added only in ,,dense“ areas of I thus possibly
filling missing values and “optimizing” tricontext for methods aiming at finding
formal concepts. Thus this technique is acceptable for solving the problem.

After the transformation Laplacian matrix is built for Γ :

Lij =





degree(vi), if i = j

−1, if i 6= j and ∃ edge (vi, vj)

0, otherwise

(7)

where vi is the ith vertex of V.
The second minimal eigenvector of L is an optimal solution of the continuous

variant of the optimal partition problem for Γ (finding the minimal set Ẽ ⊆ E
so that the graph Γ̃ = (V,E \ Ẽ) is not connected). The sign of each component
of this vector indicates one of the 2 new connected components. For convenience
we find the optimal partition vector as the approximation of the obtained vector
by setting its components to ±1 values.

In order to avoid partitioning of dangling vertices or small subgraphs the
generalized eigenvalue problem must be considered ([11], Appendix I):

Lv = λDv (8)
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where D is a diagonal matrix containing vertices’ degrees on the main diagonal.
Also, some minimum size constraint can be used to avoid too deep partition-

ing. Since spectral triclustering is not able to generate the same tricluster more
than once, it is not necessary to use hash functions to speed up the calculations.

2.4 Trias method

Formally, Trias [1] is a method for finding triadic formal concepts that are
closed 3-sets. Since triadic formal concepts can be interpreted as absolutely dense
triclusters, this method was added to the study.

Trias is based on the NextClosure algorithm that enumerates all formal
concepts of the dyadic context in lexicographical order. In Trias this approach
is extended to the triadic case and minimal support constraints are added (tri-
clusters with too small extent, intent or modus are skipped).

As well as spectral triclustering, Trias is not able to generate the same
tricluster more than once.

3 Experiments

3.1 Noise-tolerance.

In order to test noise-tolerance of the algorithms 26 triadic contexts have been
generated. The initial context contains 30 objects, 30 attributes, 30 conditions,
and 3 non-overlapping 10× 10× 10 cuboids of ones on the main diagonal in its
three-dimensional matrix form. Then this context has been sequentially noised
by the inversions with the probability of an inversion of a triple varying from
0.1 to 0.5 with 0.1 interval (the latter context can be called uniform context,
because probability of (g,m, b) ∈ I is equal for every triple). There have been 5
such series of context. Table 1 contains the average number of triples and total
density for these sets of contexts.

Table 1. Noised contexts.

Context # triples Density

p = 0 3000 0.1111
p = 0.1 5069.6 0.1873
p = 0.2 7169.4 0.2645
p = 0.3 9290.2 0.3440
p = 0.4 11412.8 0.4222
p = 0.5 13533.4 0.5032

The noise tolerance of an algorithm has been defined as the ability to build
triclusters similar to initial cuboids. We used the Jaccard similarity coefficient
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to find the most similar tricluster t for the given cuboid c and their similarity.
Total similarity has been defined as follows (C is a number of cuboids):

sim(c) =
1

C

cC∑

c=c1

max
t=t1,...,tT

|Gc ∩Gt|
|Gc ∪Gt|

|Mc ∩Mt|
|Mc ∪Mt|

|Bc ∩Bt|
|Bc ∪Bt|

(9)

Following size measure for spectral triclustering has been chosen:

Size(X,Y, Z) =
|X|+ |Y |+ |Z|
|G|+ |M |+ |B| (10)

smin has been set to 0.34 to stop at the triclusters of correct size.
All of the methods have been implemented by authors and incorporated in a

single triclustering toolbox in order to make the comparison more accurate. The
toolbox has been implemented in C# using MS Visual Studio 2010/2012. All
the experiments have been performed on Windows 7 SP1 x64 system equipped
with an Intel Core i7-2600 @ 3.40GHz processor and 8 GB of RAM. AlgLib1

library was used for eigenvalue decomposition.
The results of the experiments are represented on Figure 3. It is clear that

every method has managed to successfully find initial cuboids, but the results
quickly deteriorate for most of methods with the growth of inversion probability.
TriBox has shown the best results as it tries to optimize the density-volume
trade-off (which most probably is the best for the areas of the former cuboids for
small error probability). Though prime OAC-triclustering has been also rather
noise-tolerant, it generated significantly more triclusters (most likely the high
number of triclusters is the reason for these results). All the other methods have
been unable to provide significant results for noisy contexts. Moreover, as it was
expected, no adequate triclusters were generated by any of the methods for the
contexts with inversion probability 0.5.

3.2 Time, quantity, coverage, density and diversity.

The experiments on the computation time, triclusters count, coverage, density,
and diversity were conducted on the following contexts (Table 2):

1. Uniform context (∀(g,m, b)P ((g,m, b) ∈ I) = 0.1)
2. Top 250 movies context from www.imdb.com, objects — movie titles, at-

tributes — tags, conditions — genres
3. Random sample of 3000 of the first 100000 triples of the www.bibsonomy.org

dataset, objects — users, attributes — tags, conditions – bookmark names

Parallel versions of OAC-triclustering algorithms and TriBox have also been
implemented via parallelization of their outer loops and the computation time
for them has been compared. Coverage and diversity measures were introduced
as additional quality measures. Coverage is defined simply as a fraction of the
triples of the context (alternatively, objects, attributes or conditions) included

1 http://www.alglib.net/
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Fig. 3. Similarity for the noise-tolerance experiments

Table 2. Contexts for the experiments with 5 chosen evaluation measures.

Context |G| |M | |B| # triples Density

Uniform 30 30 30 2660 0.0985
IMDB 250 795 22 3818 0.00087

BibSonomy 51 924 2844 3000 0.000022

in at least one of the triclusters of the resulting set. To define diversity we will
use a binary function of 2 triclusters intersect(Ti, Tj) that equals to 1 if both
triclusters Ti and Tj have nonempty intersection of the sets of contained triples,
and 0 otherwise.

It is also possible to define intersect for the sets of objects, attributes and
conditions. For instance, intersectG(Ti, Tj) is equal to 1 if triclusters Ti and Tj
have nonempty intersection of their extents, and 0 otherwise.

Now we can define diversity of the tricluster set T :

diversity(T ) = 1−
∑
j

∑
i<j intersect(Ti, Tj)
|T |(|T |−1)

2

(11)

The diversity for the sets of objects, attributes or conditions is similarly
defined.

Table 3 contains the results for the experiments. The following values for
parameters were selected:

1. OAC-triclustering: ρmin = 0
2. SpecTric: smin = 0
3. Trias: τG = τM = τB = 0
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Table 3. Results of the experiments on the computation time (t), tricusters count (n),
density (ρ), coverage (Cov), and diversity (Div).

Algorithm t, ms tpar, ms n ρav, % Cov, % Div, % DivG, % DivM , % DivB , %

Uniform random context

OAC (�) 407 196 73 9.88 100.00 0.00 0.00 0.00 0.00
OAC (′) 312 877 2659 32.23 100.00 92.51 60.07 59.80 59.45
SpecTric 277 - 5 8.74 8.84 100.00 100.00 100.00 100.00
TriBox 6218 1722 1011 74.00 96.02 97.42 66.25 79.53 84.80
Trias 29367 - 38356 100.00 100.00 99.99 99.93 4.07 3.51

IMDB

OAC (�) 2314 1573 1500 1.84 100.00 15.65 9.67 0.70 7.87
OAC (′) 547 2376 1274 53.85 100.00 96.55 94.56 92.14 28.52
SpecTric 98799 - 21 17.07 20.88 100.00 100.00 100.00 100.00
TriBox 197136 55079 328 91.65 98.90 98.89 98.46 95.21 30.94
Trias 102554 - 1956 100.00 100.00 99.89 99.69 52.52 26.18

BibSonomy

OAC (�) 19297 6803 398 4.16 100.00 79.59 67.28 42.83 79.54
OAC (′) 13556 9400 1289 94.66 100.00 99.74 88.58 99.51 99.53
SpecTric 5906563 - 2 50 100.00 100.00 100.00 100.00 100.00
TriBox > 24 hrs
Trias 110554 - 1305 100.00 100.00 99.98 91.70 99.78 99.92

3.3 Results

Trias is one of the most time consuming algorithms compared in the paper
along with TriBox and SpecTric for large contexts. Though the resulting triclus-
ters (triconcepts) can easily be interpreted their number and small size make it
impossible to understand the general structure of the context. Since all tricon-
cepts have been generated and thus every triple has been covered, the coverage
is equal to 1. Since the concepts are small general diversity is rather high. Still,
the set diversity depends on the size of the corresponding set: the smaller the
set — the greater the chance of intersection and the lower the diversity.

Examples of the triconcepts for the IMDB context:

1. {The Princess Bride (1987), Pirates of the Caribbean: The Curse of the Black
Pearl (2003)}, {Pirate}, {Fantasy, Adventure}

2. {Platoon (1986), Letters from Iwo Jima (2006)}, {Battle}, {Drama,
War}

3. {V for Vendetta (2005)}, {Fascist, Terrorist, Government, Secret Police ,
Fight}, {Action, Sci-Fi, Thriller}

SpecTric has displayed rather good computation time only for small contexts.
Most of this time is used for the eigenvalue decomposition of Laplacian matrix.
Thus we intend to test some alternative linear algebra libraries in the toolbox
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and compare the results as well. The resulting triclusters can be reasonably
interpreted, though their average density is low. Their small number makes this
method good for dividing the context into several non-overlapping parts. Also
the diversities for SpecTric are always equal to 1 because the method generates
partitions of the initial context. High diversity though leads to low coverage.

Examples of the triclusters for the IMDB context:

1. ρ = 23.08%, {Alien (1979), The Shining (1980), The Thing (1982), The Ex-
orcist (1973)}, {Spaceship, Egg, Parasite, Creature, Caretaker, Colorado, Ac-
tress, Blood, Helicopter, Scientist, Priest, Washington D.C., Faith}, {Horror}

2. ρ = 2.09%, {The Shawshank Redemption (1994), The Godfather (1972), The
Godfather: Part II (1974), . . . , Bonnie and Clyde (1967), Arsenic and Old
Lace (1944)}, {Prison, Cuba, Business, 1920s, . . . , Texas, Cellar}, {Crime,
Thriller }

TriBox in this study generates the best triclusters. The only drawback of this
method is high computation time, though the use of the parallel version of
TriBox can significantly lower it for multi-core processors. Average density of
the resulting triclusters is rather high, they have good interpretability. Coverage
and diversities are also high in most of the cases. The only exception is set
diversity in the situation when some of the sets are small, just as for Trias.

Examples of the triclusters for the IMDB context:

1. 100%, {Million Dollar Baby (2004), Rocky (1976), Raging Bull (1980)},
{Boxer, Boxing}, {Drama, Sport}

2. 83.33%, {The Sixth Sense (1999), The Exorcist (1973), The Silence of the
Lambs (1991)}, {Psychiatrist}, {Drama, Thriller}

3. 33.33%, {Platoon (1986), All Quiet on the Western Front (1930), Glory
(1989), Apocalypse Now (1979), Lawrence of Arabia (1962), Saving Private
Ryan (1998), Paths of Glory (1957), Full Metal Jacket (1987)}, {Army, Gen-
eral, Jungle, Vietnam, Soldier, Recruit}, {Drama, Action, War}

Box OAC-triclustering has been not that successful. Despite being rather fast
(only OAC-triclustering based on prime operators and SpecTric for small con-
texts are faster) and having good parallel version the resulting triclusters are
quite large, have relatively low density and many intersections. It leads to the
high coverage (1 for rhomin = 0) and rather low diversities. Also these triclus-
ters are difficult to interpret (unlike SpecTric’s triclusters that also have large
size and low density). In many cases extent sizes are small. Examples are given
below:

1. 0.9%, {The Shawshank Redemption (1994), The Godfather (1972), Ladri
di biciclette (1948), Unforgiven (1992), Batman Begins (2005), Die Hard
(1988), . . . , The Green Mile (1999), Sin City (2005), The Sting (1973)},
{Prison, Murder, Cuba, FBI, Serial Killer, Agent, Psychiatrist,. . . , Window,
Suspect, Organized Crime , Revenge, Explosion, Assassin, Widow}, {Crime,
Drama, Sci-Fi, Fantasy, Thriller, Mystery}
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2. 1.07%, {The Great Escape (1963), Star Wars: Episode VI - Return of the Jedi
(1983), Jaws (1975), Batman Begins (2005), Blade Runner (1982), Die Hard
(1988),. . . , Metropolis (1927), Sin City (2005), Rebecca (1940)}, {Prison,
Murder, Cuba, FBI, Serial Killer, Agent, Psychiatrist,. . . , Shower, Alimony,
Phoenix Arizona, Assassin, Widow}, {Drama, Thriller, War}

Prime OAC-triclustering showed rather good results. It is one of the fastest
algorithms (though some additional optimizations specified for unparallel version
made parallelization inefficient for small contexts). The number of triclusters is
high, but they are easily interpreted. Once again for ρmin = 0 coverage is equal
to 1, but remains high for different ρmin. At the same time diversities are also
rather high. Examples of the triclusters for the IMDB context are given below:

1. 36%, {The Shawshank Redemption (1994), Cool Hand Luke (1967), Ameri-
can History X (1998), A Clockwork Orange (1971), The Green Mile (1999)},
{Prison, Murder, Friend, Shawshank, Banker}, {Crime, Drama}

2. 56, 67%, {The Godfather: Part II (1974), The Usual Suspects (1995)}, {Cuba,
New York, Business, 1920s, 1950s}, {Crime, Drama, Thriller}

3. 60%, {Toy Story (1995), Toy Story 2 (1999)}, {Jealousy, Toy, Spaceman,
Little Boy, Fight}, {Fantasy, Comedy, Animation, Family, Adventure}

4 Conclusion

We compared several different triclustering approaches and showed that there is
no algorithm-winner with respect to the considered criteria. Also, we can con-
clude that either (dense) prime OAC-triclustering or TriBox is a good alternative
for TCA approach because the total number of triclusers for real data example
is drastically less than the number of triconcepts. The proposed algorithm has
a good scalability on real-world data and shows acceptable noise-tolerance level.
Probably investigated spectral hierarchical partitioning of ternary relations can
be a good alternative of concept-based triclustering as a tool for fast exploratory
(preliminary) analysis.

Our further work on triclustering will go in the following directions:

– developing a unified theoretical framework for n-clustering,

– mixing several constraint-based approaches to triclustering (e.g., mining
dense triclusters first and then frequent tri-sets in them),

– finding better approaches for estimating tricluster’s density,

– taking into account the nature of real-world data for optimization (their
sparsity, value distribution, etc.).

– investigation of the existing approaches and developing their extensions to
triadic numerical data for comparison purposes,

– applying triclustering in recommender systems and social network analysis.
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1. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Trias–an algorithm
for mining iceberg tri-lattices. In: Proceedings of the Sixth International Confer-
ence on Data Mining. ICDM ’06, Washington, DC, USA, IEEE Computer Society
(2006) 907–911

2. Mirkin, B., Kramarenko, A.V.: Approximate bicluster and tricluster boxes in the
analysis of binary data. [15] 248–256

3. Miettinen, P.: Boolean tensor factorization. In Cook, D., Pei, J., Wang, W., Zäıane,
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