
Galois Sub-Hierarchies Used for Use Case
Modeling

Ants Torim1

Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
ants.torim@ttu.ee

Abstract. Use case diagrams are the core diagrams of the Unified Mod-
eling Language (UML), de facto standard for software modeling. They
are used to visualize relations between the users (Actors) and the func-
tionality of the software system (Use Cases). Galois sub hierarchy (GSH)
is a sub-order of the concept lattice that contains only concepts with ob-
ject or attribute labels. This paper investigates the viability of GSH for
visualizing the information contained within use case diagrams. While it
is possible that a GSH diagram is more complex than a use case diagram
for certain formal contexts a study of 87 student projects found no such
case. On average, use case diagrams had 3.7 times more graphical ele-
ments than corresponding GSH diagrams, demonstrating the viability of
GSH as a more compact alternative to the use case diagram.

1 Introduction

Software engineering has a long tradition of graphical modeling, there are many
different diagram types like flowcharts, BPMN, ERD and even languages like
UML containing over dozen diagram types. Most of these diagrams have el-
ements connected with directed or non-directed connections. Each element is
represented as a node and each connection as a line between these nodes. While
this approach is easy to understand and apply, methods of Formal Concept Anal-
ysis (FCA) like Galois sub hierarchies (GSH) can represent the same information
in a more concise way, significantly reducing the number of graphical elements.
This is achieved because a single node in GSH diagram can represent several
elements (it can have many labels) and a line can represent many connections.
This conforms to the “reduce redundant data-ink” principle from E. Tufte’s clas-
sic work on visual information displays [19]. GSH diagram makes it easy to see
which elements have same connections and which element has a subset of other
elements connections inviting interesting comparisons.

GSH diagrams are most natural to use when there are two types of elements
and connections between these (a bipartite graph). This applies to the UML use
case diagram that describes actors, use cases and connections between them.
A study presented here compares the GSH approach with the UML use case
diagram. There is also a brief overview about describing the connections between
use cases and data tables with diagrams, information present in CRUD matrix,
another traditional software engineering artifact.

c© Manuel Ojeda-Aciego, Jan Outrata (Eds.): CLA 2013, pp. 21–32,
ISBN 978–2–7466–6566–8, Laboratory L3i, University of La Rochelle, 2013.



2 Galois Sub-Hierarchies

Our method of visual representation is based on Galois sub- hierarchy (GSH)
diagrams from the field of Formal Concept Analysis (FCA). This article uses
some FCA terminology (formal concept, concept lattice, extent, intent) without
explanation and definitions, these can be found from many foundational articles
of this field [21], [9], [22], [23] . GSH is a subset of the concept lattice that contains
only labeled concepts. More formally, concept (A,B) from the formal context
(G,M, I) belongs to the GSH if and only if for some object g ∈ G, (A,B) =
({g}′′, {g}′), or dually, for some attribute m ∈M , (A,B) = ({m}′, {m}′′). GSH
as a tool for software engineering was introduced by Godin and Mili [10] for the
purpose of class hierarchy re-engineering.

This work differs from the standard FCA practice as the main area of in-
terest is not finding the concepts but visualizing the connections between the
elements of G and M in a concise way. Semantics of G and M can vary: objects
and attributes, use cases and actors, use cases and data tables. Users of GSH
diagrams would need to be acquainted with the following properties to see the
connections between G and M :

1. GSH diagrams show nodes (concepts), connections between them and labels
from the sets G and M attached to the nodes. Each element from G and M
has exactly one corresponding label.

2. g ∈ G is connected to m ∈ M iff there is an upward path from label g to
label m or they are labels of the same node.

3. If g1, g2 ∈ G and there is an upward path from g1 to g2 then the set of
elements g2 is connected to, g′2, is a subset of g′1.

4. Dually, if m1,m2 ∈ M and there is a downward path from m1 to m2 then
the set of elements m2 is connected to, m′

2, is a subset of m′
1.

5. If g1, g2 ∈ G and g1 and g2 are labels of the same node then g′2 = g′1.

6. Dually, if m1,m2 ∈ M and m1 and m2 are labels of the same node then
m′

2 = m′
1.

Figure 1 presents a simple formal context where G = {1, 2, 3, 4, 5, 6} and
M = {a, b, c, d, e, f} and its corresponding GSH diagram.

a b c d e f

1 x x
2 x
3 x
4 x x
5 x
6 x x x

Fig. 1. A formal context with the corresponding GSH diagram.

22 Ants Torim



There are several tools for concept lattice generation: Concept Explorer
[24], ToscanaJ [4], GaLicia [20]. Of these, only GaLicia supports Galois sub-
hierarchies, but its labeling scheme is not convenient for our purposes as its
labels contain full concept intents and extents, therefore same element can ap-
pear many times in different labels. Two freely available tools were developed as
bachelor theses, supervised by the author. One is GSH builder by Kristo Aun
[3], another is GSH by Maarja Raud [15]. Both generate GSH diagrams that
show the labels, not extents or intents.

3 Use Cases and Actors

Use Case modeling is a common tool for specifying functional requirements. An
actor is something with behavior (person, computer system) who interacts with
our system. A use case is a collection of related success and failure scenarios that
describe an actor using a system to support a goal [13]. A detailed description
of the use case is given in a text document while the use case diagram shows a
general overview: actors and their relationships to use cases. Use case diagram
can also show include and extend relations between use cases. A use case diagram
is a diagram type within Unified Modeling Language. There are many books
written about the topic including [16] and [13].

Following example (Figure 2) is redrawn from Craig Larmans partial use case
diagram describing NextGen sales system: a computerized application used to
record sales and handle payments in a retail store [13](pp. 29, 71). This is a basic
use case diagram showing use cases, actors and connections between them.

Fig. 2. Use case diagram. Actors, like System Administrator, are shown as stick figures.
Use cases, like Manage Users, are shown as ovals. Actors participation within a use case
is shown as a line. Spatial arrangement conveys no information here, unlike in diagrams
of FCA.

Galois Sub-Hierarchies Used for Use Case Modeling 23



Fig. 3. GSH diagram showing connections between use cases and actors.

Figure 3 shows a GSH diagram, equivalent to the use case diagram from
Figure 2. It is more concise with only 5 nodes and 2 lines, compared to 14 nodes
and 14 lines from Figure 2. A comparison of diagram types based on counting
the number of visual elements may seem simplistic but it is in accordance with
the principle stated by E. Tufte in his influential work on information displays
[19]: “ erase redundant data-ink, within reason”. Possible reasons for redundancy
being: “giving a context and order to complexity, facilitating comparisons over
various parts of data, perhaps crafting an aesthetic balance.” It is much easier to
see from GSH diagrams the actors that are related to same use cases, for example
Accounting System, Tax Calculator and Payment Authorization System. GSH
diagram makes also visible subset relationships between the use case sets that
actors participates in, for example Cashier can do anything that a HR System can
do. Therefore GSH diagram both reduces the data ink and compares favorably
with the use case diagram in giving a context and order to complexity and
facilitating comparisons over various parts of data.

Use case diagrams can contain relations between the use cases or between the
actors. Relating use cases is described by C. Larman [13] as “an optional step
to possibly improve their comprehension or reduce duplication” GSH diagram
showing relations between actors and use cases can not contain this information.
Figure 4 presents an example about generalization and include relationships.
Generalization is shown as a relation with a big arrowhead from less general
subtype to more general supertype. Subtype inherits relations that its super-
types have. Actor Moderator is a subtype of an actor User and thus inherits
its connection to Post a comment use case. Generalization relation between use
cases is defined dually. Generalization relations can be used to reduce the num-
ber of connections within the use case diagrams. While defining formal contexts
we add inherited relations to the subtypes.

Include and extend relations between use cases describe sub-functionality:
more complex use case includes the behavior of a smaller use case. They allow
to introduce different levels of abstraction: A. Cockburn [6] defines three common
levels of abstraction: summary, user goal (default level) and sub-function level.

24 Ants Torim



He also mentions very high summary (used rarely) and too low (should not be
used) abstraction levels. S. Ambler recommends to avoid more than two levels
of use case associations [1]. Use cases Post a comment and Delete inappropriate
comment include a common Log in sub-functionality. Use case Manage comments
includes use cases Post a comment and Delete inappropriate comment. Levels
of abstraction different from the default user goal level are shown through UML
stereotypes.

Extend and include arrows correspond to the direction of reference within the
use case documentation. In the case of an include relation, use case containing
the sub-functionality has a reference to it, in the case of an extend relation, the
sub-functionality has a reference to the use case containing it. Extend relation
is treated here as an include relation going to the opposite direction.

A method used here to deal with the include and extend relations is to
focus on a single level of abstraction (preferably user goal or summary). Use
cases at higher or lower levels of abstractions are removed and their relations
to actors are added to the use cases they have include/extend relations with.
This can introduce superfluous relations: it is impossible to deduce from the use
case diagram if a particular actor from the higher level use case participates in
certain sub-functionality or not, use case text has to be examined for that.

Fig. 4. Use case diagram with generalization and include relations.

Figure 5 shows how previous diagram (Figure 4) has been flattened as de-
scribed to the user goal abstraction level through the removal of generalization
and include relations and is now in the form that can be used for GSH generation.

GSH diagrams scale well when the number of use cases increases. Figure 6 is
based on the example project Chair in University from the course “Introduction
to information systems” in Tallinn University of Technology. Original documen-

Galois Sub-Hierarchies Used for Use Case Modeling 25



Fig. 5. Previous use case diagram flattened to the user goal level of abstraction.

tation had entire use case model split into four use case diagrams containing 25
use cases, 3 actors and 30 connections between actors and use cases. These 4
diagrams are not reproduced here due to limited space. Equivalent GSH diagram
contains 5 nodes and 4 lines. That is a significant improvement in conciseness.

Fig. 6. Labelled line diagram for Chair in University information system.

In the previous examples GSH diagrams have all been simpler (less nodes,
less connections) than use case diagrams. It is easy to see that GSH diagram
can have no more nodes than the corresponding use case diagram as each GSH
node must have at least one label and labels don’t repeat. However, for certain
contexts, GSH diagram can have more connections than the corresponding use
case diagram, as shown in the following example.

Figure 7 shows a formal context with 16 connections and a corresponding
GSH diagram with 18 connections. That raises a question if GSH diagrams are
really simpler than use case diagrams for practical applications. Following study
tries to answer this.

26 Ants Torim



A B C D

1 x x
2 x x
3 x x
4 x x
5 x x
6 x x
7 x x x x

Fig. 7. A formal context with a corresponding GSH diagram that has more lines than
the number of original connections.

4 Study

A study of 87 student projects, that were presented to the author for 2012
“Introduction to information systems” course, was completed to compare the use
case and GSH diagrams. Student projects contained the analysis documentation
for a freely chosen information system, including use case diagrams. Some of
these projects were done in groups and were larger and there was also a variation
of effort and quality. For all these projects a corresponding GSH diagram was
generated, based on its use case diagram.

Some diagrams contained generalization relations between actors. In this
case sub-actors inherited all the relations from super-actors in the corresponding
formal context. Some diagrams contained �include�relationships between use
cases. For these cases, only use cases at the user goal level were kept, use cases
included in these and their connections with actors were merged into the user
goal level use cases as described in the previous section. Use case and connection
counts are for diagrams after removing the use cases not at the user goal level
of abstraction but before the removal of generalization relations. Generalization
relation is counted as one line.

Table 1. Results of the study. UC: number of use cases, A: number of actors, L:
number of lines in the use case diagram, GSHC : number of concepts in GSH, GSHL:
number of lines in GSH.

UC A UC + A L UC + A + L GSHC GSHL GSHC+L

Minimum 3 2 6 4 10 2 0 2
Average 10.77 3.55 14.32 14.86 29.18 4.64 3.2 7.84
Maximum 27 9 32 40 68 13 14 24

Galois Sub-Hierarchies Used for Use Case Modeling 27



Ratio between the average number of elements of the use case diagrams and
the GSH diagrams is (UC +A+ L)/GSHC+L = 3.72.

Fig. 8. Scatter plot showing the number of visual elements (use case and GSH dia-
grams) for the 87 student projects.

Figure 8 shows the scatter plot of student projects showing the number of
visual elements on use case and GSH diagrams. It is easy to see that in all cases
GSH diagram was simpler than use case diagram, as all the data points lie below
the diagonal (UC +A+L) = GSHC+L line. This confirms that, at least for the
information systems with 30 or less use cases, GSH diagrams are much more
concise than the use case diagrams.

Use case diagrams have their own advantages. They are easier to sketch and
modify by hand and they are easier to decompose into several diagrams. That
seems to suggest complementary roles for use case and GSH diagrams, use case
diagrams for quick sketching and GSH diagrams for a well-formated and concise
view of the system.

28 Ants Torim



5 CRUD matrix

Use cases are not only connected to the actors who require such a functionality
but they operate on data tables. GSH diagrams are useful for modeling these
connections too. CRUD matrix is a well known artifact of software engineering
that describes relations between data tables and use cases. It is described in
several popular books about systems design [7] and databases [14]. Use of CRUD
matrix as a basis for GSH diagrams was described by author in [18]. It is shortly
summarized here to show the usefulness of GSH diagrams for different software
engineering activities. There are 4 basic actions performed on data tables by
use cases: (C)reate, (R)ead, (U)pdate, (D)elete. In some variations use cases are
replaced with actors or business processes.

Table 2 contains a CRUD matrix for a simplified library system. Columns
correspond to data tables and rows to use cases. Letters c, r, u, d inside the cells
of the matrix correspond to 4 basic actions. For example, use case Add New
Task reads data from the table Employee and creates (adds) new data to the
table Task.

Table 2. CRUD matrix for a simplified library system. Reused from previous article
[18].

Employee Reader Task Loan EmployeePosition Book

Manage readers crud
Manage employees crud cd
Manage books crud
Add loan c r
Add new task r c
Return loaned book u r

We can think of a CRUD matrix as defining dependencies between use case
layer and data layer. To describe only dependencies we introduce a new binary
matrix where all entries with no actions in the original CRUD matrix are replaced
with 0 and all entries with at least one action are replaced with 1. We refer to
such a matrix as a usage matrix. Table 3 is a usage matrix for Table 2.

It is obvious that usage matrix, and therefore GSH diagram, can be gener-
ated automatically from CRUD matrix. That kind of tool could provide visual
representation of CRUD matrix without extra effort from the tool user.

Figure 9 is a GSH diagram based on the usage matrix from Table 3. From the
GSH diagram it is much easier to see the elements with same dependencies, like
use cases Add loan and Return loaned book and disconnected subsystems, like
use case Manage Readers with data table Reader. GSH diagrams are also helpful
for detecting hidden similarities/isomorphisms between different contexts. It is

Galois Sub-Hierarchies Used for Use Case Modeling 29



Table 3. Usage matrix for a simplified library system. Based on Table 2.

Employee Reader Task Loan EmployeePosition Book

Manage readers x
Manage employees x x
Manage books x
Add loan x x
Add new task x x
Return loaned book x x

Fig. 9. Labelled line diagram based on Table 3.

much easier to see that GSH diagrams from Figures 1 and 9 are isomorphic than
that matrices from Figure 1 and Table 3 are isomorphic.

6 Related work

The use of methods of FCA for software engineering is not a novel idea. A
thorough survey of FCA support for software engineering activities is given in
[17]. Most of such research is about extracting potential class hierarchies from
different contexts.

Dolques et al [8] propose a FCA-based method for simplifying use case dia-
grams through the introduction of new generalizations. The result of this method
is a refactored use case diagram. Their method preserves the information of in-
clude and extend relations. Reduction of diagram elements seems to be smaller
than with GSH based method reviewed here though these results are hard to
compare exactly as they present them in the terms of edge density (ratio of ex-
isting edges to all possible edges). It is possible that the edge density goes down
while the actual number of edges increases when new generalized use cases and
actors are introduced.

30 Ants Torim



Wolfgang Hesse and Thomas Tilley [12] use a concept lattice connecting
use cases and ”things” as a tool for identifying candidate classes for object
oriented design. There has been much research into using FCA and GSH for
class hierarchy design [10], [11]. Algorithms for GSH generation are compared in
the article by Arévalo et al [2], a newer algorithm Hermes is presented by Berry
et al [5].

7 Conclusions

GSH diagrams can be a concise replacement for UML use case diagrams. In our
study they had 3.7 times less visual elements. GSH diagrams are likely to be
useful wherever there are connections between two types of elements: actors and
use cases, use cases and data tables, use cases and classes, business processes
and use cases and so on.

One area for further research is the software engineering activity of group-
ing elements into subsystems. Similar use cases can be grouped into functional
subsystems, similar data tables can be grouped into registers. GSH and concept
lattice diagrams can help here by organizing elements by similar connections.
Use cases that depend on the same data tables are likely to be similar. Group-
ing elements with similar connections into same subsystems would also help to
minimize the connections at subsystem level. GSH diagrams can also be used to
visualize the subsystem level connections, thus promising to be a quite universal
tool for software engineering.

References

1. Ambler, S., W. (2005): The Elements of UML 2.0 Style. Cambridge University Press.
2. Arévalo, G., Berry, A., Huchard, M., Perrot, G., Sigayret, A. (2007): Performances

of Galois Sub-Hierarchy-Building Algorithms. Formal Concept Analysis, LNCS, vol.
4390, 166-180.

3. Aun, K.: Galois sub-hierarchy builder. [WWW]
http://sourceforge.net/projects/gshbuilder/ (15.09.2013).

4. Becker, P., Hereth, J., Stumme, G. (2002): ToscanaJ - an Open Source Tool for
Qualitative Data Analysis. Advances in Formal Concept Analysis for Knowledge
Discovery in Databases. Proc. Workshop FCAKDD of the 15th European Conference
on Artificial Intelligence, 1-2.

5. Berry, A., Huchard, M., Napoli, A., Sigayret, A. (2012): Hermes: an Efficient Algo-
rithm for Building Galois Sub-hierarchies. CLA 2012: 21-32.

6. Cockburn, A. (2000): Writing Effective Use Cases. Boston: Addison-Wesley.
7. Dennis, A., Haley Wixom, B., Roth, R. (2008): Systems Analysis and Design, 4th

ed. Wiley.
8. Dolques, X., Huchard, M., Nebut, C., Reitz, P. (2012): Fixing Generalization Defects

in UML Use Case Diagrams. Fundam. Inform. 115(4): 327-356.
9. Ganter, B.,Wille, R. (1998): Formal Concept Analysis, Mathematical Foundations.

Berlin: Springer.
10. Godin, R., Mili, H. (1993): Building and Maintaining Analysis-Level Class Hierar-

chies using Galois Lattices. Proceedings of OOPSLA 28, 394-410.

Galois Sub-Hierarchies Used for Use Case Modeling 31



11. Godin, R., Valtchev, P. (2005): Formal Concept Analysis-Based Class Hierarchy
Design in Object-Oriented Software Development. Formal Concept Analysis 2005,
LNCS, vol. 3626, 304-323.

12. Hesse, W., Tilley, T. (2005): Formal Concept Analysis Used for Software Analysis
and Modelling. Formal Concept Analysis 2005, LNCS, vol. 3626, 259-282.

13. Larman, C. (2002): Applying UML and Patterns, 2nd ed. Upper Saddle River, NJ:
Prentice Hall.

14. Oppel, A. J. (2004): Databases Demystified. New York: McGraw-Hill.
15. Raud, M.: GSH. [WWW] http://staff.ttu.ee/ torim/fca.html (15.09.2013).
16. Rumbaugh, J., Jacobson, I., Booch, G. (1999): The Unified Modelling Language

Reference Manual. Boston: Addison Wesley.
17. Tilley, T., Cole, R., Becker, P., Eklund, P. (2005): A Survey of Formal Concept

Analysis Support for Software Engineering Activities. Formal Concept Analysis 2005,
LNCS, vol. 3626, 250-271.

18. Torim, A. (2011): A Visual Model of the CRUD Matrix. Proceedings of the 21th
European-Japanese Conference on Information Modelling and Knowledge Bases.
(Ed.) Jaak Henno, Yasuhi Kiyoki, Takehiro Tokuda, Naofumi Yoshida. Tallinn: TTU
Press, 114 - 122.

19. Tufte, E. R. (2001): The Visual Display of Quantitative Information, 2nd ed.
Cheshire, Connecticut: Graphics Press.

20. Valtchev, P., Grosser, D., Roume, C., Hacéne, R. (2003): Galicia: an Open Platform
for Lattices. Using Conceptual Structures: Contrib. to the 11th ICCS, 241-254.

21. Wille, R.: Restructuring lattice theory (1982): an approach based on hierarchies of
concepts. Ordered Sets, pp. 445-470.

22. Wille, R., Stumme, G., Ganter, B. (2005): Formal Concept Analysis: Foundations
and Applications, Berlin: Springer.

23. Wille, R. (2005): Formal Concept Analysis as Mathematical Theory of Concepts
and Concept Hierarchies. Formal Concept Analysis 2005, LNCS, vol. 3626, 47-70.

24. Yevtushenko, S. A. (2000): System of Data Analysis ”Concept Explorer” (In Rus-
sian). Proceedings of the 7th national conference on Artificial Intelligence KII, 127-
134.

32 Ants Torim


