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Abstract. The Boolean factor analysis is an established method for
analysis and preprocessing of Boolean data. In the basic setting, this
method is designed for finding factors, new variables, which may ex-
plain or describe the original input data. Many real-world data sets are
more complex than a simple data table. For example almost every web
database is composed from many data tables and relations between them.
In this paper we present a new approach to the Boolean factor analy-
sis, which is tailored for multi-relational data. We show our approach on
simple examples and also propose future research topics.

1 Introduction

Many data sets are Boolean by nature, that is, they contain only 0s and 1s.
For example, any data recording the presence (or absence) of variables in ob-
servations are Boolean. Boolean data can be seen as a binary data table (or
matrix or formal context) C, where the rows represent objects and the columns
represent attributes of these objects. Between objects and attributes exists an
incidence relation with meaning that an object i has an attribute j and this fact
is represented by one in the Boolean table, i.e. Cij = 1. If an object i has not
an attribute j, than Cij = 0.

Many real-word data sets are more complex that a simple data table. Usually,
they are composed from many data tables, which are interconnected by relations.
An example of such data can be found in almost every sector of human activity.
We call this kind of data multi-relational data. In this kind of data, this relations
are crucial, because they represent additional information about the relationship
between data tables and this information is important for understanding data
as a whole.

The Boolean factor analysis (BFA) is used for many data mining purposes.
The basic task in the BFA is to find new variables, called factors, which may
explain or describe original single input data. Finding factors is obviously an
important step for understanding and managing data. Boolean nature of data
is in this case beneficial especially from the standpoint of interpretability of the
results. On the other hand BFA is suitable for single input Boolean data table
with just one relation between objects and attributes. The main aim of this work
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is to present the BFA of multi-relational data, which takes into account relations
between data tables and extract more detailed information from this complex
data.

2 Preliminaries and basic notions

We assume familiarity with the basic notions of FCA [3]. In this work, we use
the binary matrix terminology, because it is more convenient from our point
of view. Consider an n×m object-attribute matrix C with entries Cij ∈ {0, 1}
expressing whether an object i has an attribute j or not, i.e. C can be understood
as a binary relation between objects and attributes. Because there is no danger
of confusion we can consider this matrix as a formal context 〈X,Y,C〉, where X
represents a set of n objects and Y represents a set of m attributes.

A formal concept of 〈X,Y,C〉 is any pair 〈E,F 〉 consisting of E ⊆ X (so-
called extent) and F ⊆ Y (so-called intent) satisfying E↑ = F and F ↓ = E
where E↑ = {y ∈ Y | for each x ∈ X : 〈x, y〉 ∈ C}, and F ↓ = {x ∈ X | for each
y ∈ Y : 〈x, y〉 ∈ C}.

The goal of the BMF (the idea from [1, 6]) is to find decomposition

C = A ◦B (1)

of I into a product of an n × k object-factor matrix A over {0, 1}, a k × m
matrix B over {0, 1}, revealing thus k factors, i.e. new, possibly more funda-
mental attributes (or variables), which explain original m attributes. We want
k < m and, in fact, k as small as possible in order to achieve parsimony: The n
objects described by m attributes via C may then be described by k factors via
A, with B representing a relationship between the original attributes and the
factors. This relation can be interpreted in the following way: an object i has an
attribute j if and only if there exists a factor l such that i has l (or, l applies to
i) and j is one of the particular manifestations of l.

The product ◦ in (1) is a Boolean matrix product, defined by

(A ◦B)ij =
∨k
l=1Ail ·Blj , (2)

where
∨

denotes maximum (truth function of logical disjunction) and · is the
usual product (truth function of logical conjunction). For example the following
matrix can be decomposed into two Boolean matrices with k < m.




1 1 0
1 1 1
1 0 1


 =




0 1
1 1
1 0


 ◦

(
1 0 1
1 1 0

)

The least k for which an exact decomposition C = A ◦ B exists is in the
Boolean matrix theory called the Boolean rank (or Schein rank).

An optimal decomposition of the Boolean matrix can be found via Formal
concept analysis. In this approach, the factors are represented by formal con-
cepts, see [2]. The aim is to decompose the matrix C into a product AF ◦BF of
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Boolean matrices constructed from a set F of formal concepts associated to C.
Let

F = {〈A1, B1〉 , . . . , 〈Ak, Bk〉} ⊆ B(X,Y,C),

where B(X,Y,C) represents set of all formal concepts of context 〈X,Y,C〉. De-
note by AF and BF the n× k and k ×m binary matrices defined by

(AF )il =

{
1 if i ∈ Al
0 if i /∈ Al (BF )lj =

{
1 if j ∈ Bl
0 if j /∈ Bl

for l = 1, . . . , k. In other words, AF is composed from characteristic vectors Al.
Similarly for BF . The set of factors is a set F of formal concepts of 〈X,Y,C〉,
for which holds C = AF ◦BF . For every C such a set always exists. For details
see [2].

Interpretation factors as a formal concepts is very convenient for users and
we follow this point of view in our work. Because a factor can be seen as a formal
concept, we can consider the intent part (denoted by intent(F )) and the extent
part (denoted by extent(F )) of the factor F .

3 Related work

The Boolean matrix factorization (or decomposition), also known as the Boolean
factor analysis, has gained interest in the data mining community during the past
few years.

In the literature, we can find a wide range of theoretical and application
papers about the Boolean factor analysis. The overview of the Boolean matrix
theory can be found in [8]. A good overview from the BMF viewpoint is in
e.g. [12]. For our work is the most important [2], where were first used formal
concepts as factors.

Several heuristic algorithms for the BMF were proposed. In our work we
adopt algorithm GreConD [2] (originally called Algorithm 2), but there exist
several different approaches, which use so-called “tiles” in Boolean data [4],
hyper-rectangles [15] or which introduce some noise [12, 10] in Boolean data.

From wide range of applications papers let us mentioned only [13] and [14],
where the BMF is used for solving the Role mining problem.

In the literature, there can be found several methods for the latent factor
analysis of ordinal data and also of multi-relational data [9], but using these
methods for Boolean data has proved to be inconvenient many times.

The BMF of multi-relational data is not directly mentioned in any previous
work. Indirectly, it is mentioned, in a very specific form, in [11] as Joint Subspace
Matrix Factorization, where there are two Boolean matrices, which both share
the same rows (or columns). The main aim is to find a set of shared factors
(factors common for both matrices) and a set of specific factors (factors which
are either in first or second matrix, not in both). This can be viewed as particular,
very limited setting of our work.
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From our point of view are also relevant works [5, 7]. These introduce the
Relational formal concept analysis (RCA), i.e. the Formal concept analysis on
multi-relational data. Our approach is different from the RCA. In our approach,
we extract factors from each data table and connect these factors into more
general factors. In RCA, they iteratively merge data tables into one in the fol-
lowing way: in each step they computed all formal concepts of one data table
and these concepts are used as additional attributes for the merged data table.
After obtaining a final merged data table, all formal concepts are extracted. Let
us mention that our approach delivers more informative results than a simple
use of BMF on merged data table from RCA, moreover getting merged data
table is computationally hard.

4 Boolean factor analysis of multi-relational data

In this section we describe our basic problem setting. We have two Boolean data
tables C1 and C2, which are interconnected with relation RC1C2

. This relation is
over the objects of first data table C1 and the attributes of second data table C2,
i.e. it is an objects-attributes relation. In general, we can also define an objects-
objects relation or an attributes-attributes relation. Our goal is to find factors,
which explain the original data and which take into account the relation RC1C2

between data tables.

Definition 1. Relation factor (pair factor) on data tables C1 and C2 is a pair〈
F i1, F

j
2

〉
, where F 1

i ∈ F1 and F j2 ∈ F2 (Fi denotes set of factors of data table

Ci) and satisfying relation RC1C2 .

There are several ways how to define the meaning of “satisfying relation”
from Definition 1. We will define the following three approaches (this definition
holds for an object-attribute relation, other types of relations can be defined in
similar way):

– F i1 and F j2 form pair factor 〈F i1, F j2 〉 if holds:

⋂

k∈extent(F i
1)

Rk 6= ∅ and
⋂

k∈extent(F i
1)

Rk ⊆ intent(F j2 ),

where Rk is a set of attributes, which are in relation with an object k. This
approach we called narrow (it is analogy of the narrow operator in [7]).

– F i1 and F j2 form pair factor 〈F i1, F j2 〉 if holds:




 ⋂

k∈extent(F i
1)

Rk


 ∩ intent(F j1 )


 6= ∅.

We called this approach wide (it is analogy of the wide operator in [7]).

190 Marketa Krmelova and Martin Trnecka



– for any α ∈ [0, 1], F i1 and F j2 form pair factor 〈F i1, F j2 〉 if holds:

∣∣∣
(⋂

k∈extent(F i
1)
Rk
)
∩ intent(F j2 )

∣∣∣
∣∣∣
⋂
k∈extent(F i

1)
Rk
∣∣∣

≥ α.

We called it an α-approach.

Remark 1. It is obvious, that for α = 0 and replacing ≥ by >, we get the wide
approach and for α = 1, we get the narrow one.

Lemma 1. For α1 > α2 holds, that a set of relation factors counted by α1 is a
subset of a set of relation factors obtained with α2.

We demonstrate our approach to factorisation of mutli-relational Boolean
data by a small illustrative example.

Example 1. Let us have two data tables CW (Table 1) and CM (Table 2). CW
represents women and their characteristics and CM represents men and their
characteristics.

Table 1: CW
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Abby × × ×
Becky × ×
Claire × ×
Daphne × × × ×

Table 2: CM
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Adam × ×
Ben × ×
Carl × × ×
Dave × ×

Table 3: RCWCM
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Abby × ×
Becky × ×
Claire × × ×
Daphne × × × ×

Moreover, we consider relation RCWCM
(Table 3) between the objects of first

the data table and the attributes of the second data table. In this case, it could
be a relation with meaning “woman looking for a man with the characteristics”.

Remark 2. Generally, nothing precludes the object-object relation (whose mean-
ing might be “woman likes a man”) and the attribute-attribute relation (whose
meaning might be “the characteristics of women are compatible with the char-
acteristics of men in the second data table”).

Factors of data table CW are:

– FW1 = 〈{Abby, Daphne}, {undergraduate, wants kids, is attractive}〉
– FW2 = 〈{Becky, Daphne}, {athlete, wants kids}〉
– FW3 = 〈{Abby, Claire, Daphne}, {undergraduate, is attractive}〉

Factors of data table CM are:
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– FM1 = 〈{Ben, Carl}, {undergraduate, wants kids}〉
– FM2 = 〈{Adam}, {athlete, is attractive}〉
– FM3 = 〈{Adam, Carl}, {athlete}〉
– FM4 = 〈{Dave}, {wants kids, is attractive}〉

These factors were obtained via GreConD algorithm from [2]. We have two
sets of factors (formal concepts), first set FW = {F 1

W , F
2
W , F

3
W } factorising data

table CW and FM = {F 1
M , F

2
M , F

3
M} factorising data table CM .

Now we use so far unused relation RCWCM
, between CW and CM to joint

factors of CW with factors of CM into relational factors. For the above defined
approaches we get results which are shown below. We write it as binary relations,
i.e F iW and F jM belongs to relational factor 〈F iW , F jM 〉 iff F iW and F jM are in
relation:

Narrow approach
F 1
M F 2

M F 3
M F 4

M

F 1
W ×

F 2
W

F 3
W ×

Wide approach
F 1
M F 2

M F 3
M F 4

M

F 1
W × ×

F 2
W × × × ×

F 3
W ×

0.6-approach
F 1
M F 2

M F 3
M F 4

M

F 1
W ×

F 2
W ×

F 3
W ×

0.5-approach
F 1
M F 2

M F 3
M F 4

M

F 1
W × ×

F 2
W ×

F 3
W ×

The relational factor in form 〈F iW , F jM 〉 can be interpreted in the following
ways:

– Women, who belong to extent of F iW like men who belong to extent of F jM .
Specifically in this example, we can interpret factor 〈F 1

W , F
1
M 〉, that Abby

and Daphne should like Ben and Carl.
– Women, who belong to extent of F iW like men with characteristic in intent

of F jM . Specifically in this example, we can interpret factor 〈F 1
W , F

1
M 〉, that

Abby and Daphne should like undergraduate men, who want kids.
– Women, with characteristic from intent F iW like men who belong to extent

F jM . Specifically in this example, we can interpret factor 〈F 1
W , F

1
M 〉, that

undergraduate, attractive women, who want kids should like Ben and Carl.
– Women, with characteristic from intent F iW like men with characteristic in

intent of F jM . Specifically in this example, we can interpret factor 〈F 1
W , F

1
M 〉,

that undergraduate, attractive women, who want kids should like undergrad-
uate men, who want kids.

Interpretation of the relation between F iW and F jM is driven by used approach.

If we obtain factor 〈F iW , F jM 〉 by narrow approach, we can interpret relation be-

tween F iW and F jM : “women who belong to F iW , like men from FMj completely”.

For example factor 〈F 1
W , F

1
M 〉 can be interpreted: “All undergraduate attractive

women, who want kids, wants undergraduate men, who want kids.”
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If we obtain factor 〈F iW , F jM 〉 by wide approach, we can interpret the relation

between F iW and F jM : “women who belong to F iW , like something about the men
from FMj ”. For example 〈F 2

W , F
1
M 〉 can be interpreted: “All athlete woman, who

want kids, like undergraduate men or man, who want kids.”
If we get 〈F iW , F jM 〉 by α-approach with value α, we interpret the relation

between F iW and F jM as: “women from F iW , like men from FMj enough”, where
α determines measurement of tolerance.

Remark 3. Not all factors from data tables CW or CM must be present in any
relational factor. It depends on the used relation. For example in Example 1 in
narrow approach, the factors F 2

M , F
3
M , F

4
M are not involved. In this case, we can

add these simple factors to the set of relational factors and consider two types of
factors. This factors are not pair factors, but classical factors from CW or CM .
Of course this depends on a particular application.

Remark 4. For one factor F i1 from the data table C1, two factors from the data
table C2 (for example F j12 and F j22 ) can satisfy the relation. In this case we can

add factor 〈F i1, F j12 &F j22 〉, where F j12 &F j22 means

extent(F j12 &F j22 ) = extent(F j12 ) ∪ extent(F j22 )

and
intent(F j12 &F j22 ) = intent(F j12 ) ∩ intent(F j22 ),

instead of 〈F i1, F j12 〉 and 〈F i1, F j22 〉 to the relation factor set (in the case, that
we consider an object-attribute relation). For example, by using 0.5-approach in
Example 1, we get relational factors

〈
〈{Abby,Daphne}, {undergraduate,wants kids, is attractive}〉,

〈{Ben,Carl}, {undergraduate,wants kids}〉
〉

and
〈
〈{Abby,Daphne}, {undergraduate,wants kids, is attractive}〉,

〈{Dave}, {wants kids, is attractive}〉
〉
.

This factors can be replaced with factor
〈
〈{Abby,Daphne}, {undergraduate,wants kids, is attractive}〉,

〈{Ben,Carl,Dave}, {wants kids}〉
〉
.

Remark 5. Another, simpler approach to multi-relational data factorization is
such, that we do factorization of the relation RC1C2 . This is correct because we
can imagine the relation between data tables C1 and C2 as another data table.
For each factor, we take the extent of this factor and compute concept in C1,
which contains this extent. Similarly for intents of factors and concepts in C2.
For example one of the factors of RCWCM

from Example 1 is:

〈{Becky, Daphne}, {athlete, wants kids}〉.
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Relational factor computed from this factor will be

〈
〈{Becky, Daphne}, {athlete, wants kids}〉,

〈{Carl}, {athlete, undergraduate, wants kids}〉
〉
.

This approach seems to be better in terms of that we get pair of concepts for
every factors, but we do not get an exact decomposition of data tables C1 and
C2. Moreover this approach can not be extended to n-ary relations.

4.1 n-tuple relational factors, n-ary relations

Above approaches can be generalized for more than two data tables. In this
generalization, we do not get factor pairs, but generally factor n-tuples. Now we
extend Definition 1 to general definition of relational factor.

Definition 2. Relation factor on data tables C1, C2, . . . Cn is a n-tuple〈
F i11 , F

i2
2 , . . . F

in
n

〉
, where F

ij
j ∈ Fj where j ∈ {1, . . . , n} (Fj denotes set of

factors of data table Cj) and satisfying relations RClCl+1
or RCl+1Cl

for l ∈
{1, . . . , n− 1}.

We considered only binary relations between data tables, for which holds,
that there exists only one relation interconnecting data tables Ci and Ci+1 for
i ∈ {1, . . . , n − 1}. We left more general relations into the extended version of
this paper. Let us mentioned, that this generalization of our approach is possible
in the opposite of Remark 5. We show n-tuple relational factors on example.

Example 2. Let data table CP (Table 4) represents people and their characteris-
tic, CR (Table 5) represents restaurants and their characteristics and CC (Table
6) represents which ingredients are included in national cuisines.

Table 4: CP
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Adam × ×
Ben × ×
Carol × ×
Dale × ×
Emily ×
Frank ×
Gabby × ×

Table 5: CR

lu
xu

ry
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l
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ve
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Restaurant 1 × ×
Restaurant 2 × ×
Restaurant 3 × ×
Restaurant 4 × ×
Restaurant 5 × ×
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Table 6: CC
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1 2 3 4 5 6 7 8 9 1
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9

2
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2
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2
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2
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2
5

2
6

2
7

Greek × × × × × × × × × × × ×
Chinese × × × × × × × × × × × × × ×
French × × × × × × × × × × × × × × ×
Indian × × × × × × × × ×
Czech × × × × × × × × × × × × × ×
Spanish × × × × × × × × × × ×
Mexican × × × × × × × × × × ×
Italian × × × × × × × × × × × ×
American × × × × × × × × ×
Japanese × × × ×
German × × × × × × × ×

Table 7: RCPCC
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Adam × × × × × ×
Ben × × × × × × ×
Carol × × × × × × × × × ×
Dale × × × × × × × × ×
Emily × × × × × × ×
Frank × × × × ×
Gabby × × × × ×

Relation RCPCC
(Table 7) represents relationship “person likes ingredients”

and relation RCRCC
(Table 8) represents relationship “restaurant cooks national

cuisine”. In Tables 9, 10, 11, we can see factors of data tables CP , CR and CC ,
respectively.
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Table 8: RCRCC
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Restaurant 1 × × × × ×
Restaurant 2 × × × × × ×
Restaurant 3 × × × ×
Restaurant 4 × × × ×
Restaurant 5 × × × ×

Table 9: Factors of data table CP
F i
P Extent Intent

F 1
P {Adam,Ben,Dale,Frank} {male}

F 2
P {Adam,Emily,Frank} {American}

F 3
P {Carol,Emily,Gabby} {female}

F 4
P {Ben,Carol} {European}

F 5
P {Dale,Gabby} {Asian}

Table 10: Factors of data table CR
F i
R Extent Intent

F 1
R {Restaurant 4,Restaurant 5} {ordinal, cheap}

F 2
R {Restaurant 1,Restaurant 2} {luxury, expensive}

F 3
R {Restaurant 3} {luxury, cheap}

Table 11: Factors of data table CC
F i
C Extent Intent

F 1
C {Chinese,French, Spanish,Mexican,American,German} {1, 3, 15, 16, 17}

F 2
C {Greek,Spanish, Italian} {1, 2, 3, 4, 8, 9, 10}

F 3
C {French,Czech} {1, 10, 11, 12, 15, 16, 17, 21, 22, 23}

F 4
C {Chinese, Indian,Spanish,Mexican, Italian, Japanese} {1, 3, 4, 14}

F 5
C {Greek,French, Indian} {1, 3, 4, 6, 7}

F 6
C {Chinese} {1, 3, 4, 5, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25}

F 7
C {Italian,American} {1, 3, 4, 11, 27}

F 8
C {Greek,Czech,Mexican} {1, 2, 5}

F 9
C {Indian,Mexican} {1, 2, 3, 4, 13, 14, 17}

F 10
C {Czech, Itelian,German} {1, 2, 12}

F 11
C {Czech, ,American} {1, 15, 16, 17, 26}

F 12
C {Greek} {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 19}

F 13
C {Greek,French, Spanish, Italian} {1, 3, 4, 9, 10}

F 14
C {Chinese,Czech} {1, 5, 12, 15, 16, 17, 20}

F 15
C {French,Czech,German} {1, 12, 15, 16, 17, 22}

F 16
C {Mexican} {1, 2, 3, 4, 5, 13, 14, 15, 16, 17, 24}

F 17
C {Chinese, Itelian} {1, 3, 4, 12, 14, 25}

One of the relational factors, which we get by 0.5-approach, is 〈F 1
P , F

11
C , F 3

R〉
and could be interpreted as “men would enjoy eating in luxury restaurants where
the meals are cheap”. Another factor is 〈F 3

P , F
2
C , F

1
R〉 and could be interpreted

as “women enjoy eating in ordinal cheap restaurants”.
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4.2 Representation of connection between factors

We can represent the relational factors via graph (n-partite). See Figure 1, which
presents the results from the previous example. Each group of nodes (F iP , F

i
C , F

i
R)

represents factors of a specific data table. Between two nodes, there is an edge
iff factors representing nodes satisfy the input relation. Relational factor is path
between nodes, which include at most one node from each group. For example,〈
F 2
P , F

3
C , F

1
R

〉
is a relational factor because there is an edge between nodes F 2

P

and F 3
C and between F 3

C and F 1
R.
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Fig. 1: Representation factors connections via graph.

5 Conclusion and Future Research

In this paper we present the new approach to BMF of multi-relational data, i.e.
data which are composed from many data tables and relations between them.
This approach, as opposed from to BMF, takes into account the relations and
uses these relations to connect factors from individual data tables into one com-
plex factor, which delivers more information than the simple factors.
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A future research shall include the following topics: generalization multi-
relational Boolean factorization for ordinal data, especially data over residuated
lattices. Design an effective algorithm for computing relational factors. Develop
new approaches for connecting factors which utilize statistical methods and last
but not least drive factor selection in the second data table, using information
about factors in the first one and relation between them, for obtaining more
relevant data.
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