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Abstract. The second order formal context is a formal context such
that its object and attribute sets are disjoint unions of object and at-
tribute sets of external formal contexts. Every subset of object or at-
tribute set will be evaluated from concept lattice of corresponding ex-
ternal formal context. The paper provides a method how to compute
such second order formal concepts by using of bonds between external
formal contexts or by using of heterogeneous formal contexts methods.
Last part of the paper shows how this structure generalizes homogenic
fuzzy formal context and its derivation operators.

1 Motivation example

Imagine the following situation as a motivation. Lets have a group of people
that everybody knows each other (schoolmates, co-workers, etc.). All of them
are going to travel somewhere together and you (as an organizer of the trip)
would like to know their requirements for accommodation. Consider the following
formal context. Set of objects represents a group of co-workers (Anna, Bob,
Cyril, David, Erik). Set of attributes expresses their requirements (TV, Wellness,
Closeness to a city center, Restaurant in a hotel). An example of such context
is in the following table. Lets denote the following table as P as preferences.

P TV W Ce R
Anna • • •
Bob ◦ ◦ • •
Cyril ◦ • • ◦
David • • ◦
Erik • • ◦ •

A particular formal concept of the given context describes a set of co-workers
such that these people together have a common requirements for accommoda-
tion.

In addition, there are another two formal contexts. The first one describes a
friendship relation inside the group of such people (denoted as F). The second
one describes a situation about hotels and services they offer (denoted as H).
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F Anna Bob Cyril David Erik
Anna • ◦ ◦
Bob ◦ • • ◦ ◦
Cyril ◦ • • • •
David ◦ • • •
Erik ◦ • • •

H TV W C R
H1 • • • •
H2 • • •
H3 •
H4 • • •

All contexts are filled by truth degrees from the following set {• = true, ◦ =
middle, ” ” = false}. Computing of L-concepts is based on  Lukasiewicz logic.

Now, we aim at connecting such table data with known intercontextual mech-
anisms in order to obtain closed sets of friends from F that are able to stay in
any of a closed set of hotels from H. The hotels of this closed set offer as much
requirements from P as it gets.

2 Preliminaries

2.1 Basics

Formal Concept Analysis (FCA) as an applied Lattice Theory [7] has become
a very useful tool for discovering of hidden knowledge inside a data of object-
attribute table, so called formal contexts. Fundamental construction of FCA
is a Galois connection between complete lattices of all subsets of objects and
attributes. A Galois connection consists of two mappings such that a compo-
sition of these mappings form a closure operators on each subsets of complete
lattice. Pair of closed subset of objects and subset of attributes connected to
each other by the Galois connection is called formal concept. The set of formal
concepts forms a complete lattice. The mentioned notions were generalized over
a fuzzy logic based on a complete residuated lattice. The notions of order, Galois
connection and complete lattice were also generalized by Bělohlávek in [3–6].

Definition 1. Complete residuated lattice is an algebra 〈L,∧,∨, 0, 1,⊗,→〉,
where

– 〈L,∧,∨, 0, 1〉 is a complete lattice with top 1 and bottom 0,
– 〈L,⊗, 1〉 is a commutative monoid,
– 〈⊗,→〉 is an adjoint pair, i.e.

a⊗ b ≤ c is equivalent to a ≤ b→ c

for any a, b, c ∈ L.

Definition 2. L-fuzzy formal context C is a triple 〈B,A, r〉, where r : B×A→
L is an L-fuzzy binary relation and L is the complete residuated lattice.

Definition 3. Let 〈B,A, r〉 be an L-fuzzy formal context. Lets define a pair of
derivation operators 〈↑, ↓〉 of the form ↑: LB −→ LA and ↓: LA −→ LB, where

↑ (f)(a) =
∧

b∈B
(f(b)→ r(b, a)) for any f ∈ LB and a ∈ A,

↓ (g)(b) =
∧

a∈A
(g(a)→ r(b, a)) for any g ∈ LA and b ∈ B.
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Lemma 1. Let 〈↑, ↓〉 be a pair of derivation operators defined on an L-fuzzy for-
mal context 〈B,A, r〉. A pair 〈↑, ↓〉 forms a Galois connection between complete
lattices of all L-sets of objects LB and attributes LA.

Definition 4. Let C = 〈B,A, r〉 be an L-fuzzy formal context. Formal concept
is a pair of L-sets 〈f, g〉 ∈ LB × LA such that ↑ (f) = g and ↓ (g) = f . The
set of all L-concepts of C will be denoted by FCL(C). Object or attribute part of
any concept is called extent or intent. Sets of all extents or intents of C will be
denoted as Ext(C) or Int(C), respectively.

2.2 Bonds and Chu correspondences

FCA provides the useful methods how to connect two formal contexts. A struc-
ture of the so called Chu correspondence was introduced by Mori [13, 14] that
is very close to the notion of bond [7]. The notions of Chu correspondence and
bond were extended into L-fuzzy Chu correspondence and L-bond in [8]. The
corresponding notions are introduced now.

Definition 5. Let Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2} be two L-fuzzy formal contexts.
Pair of L-multimappings ϕ = 〈ϕL, ϕR〉 such that

– ϕL : B1 −→ Ext(C2),
– ϕR : A2 −→ Int(C1),

where ↑2 (ϕL(o1))(a2) =↓1 (ϕR(a2))(o1) for any (o1, a2) ∈ B1×A2, is said to be
an L-Chu correspondence between C1 and C2. Set of all L-Chu correspondences
between L-contexts C1 and C2 will be denoted by L-ChuCors(C1, C2).

Definition 6. Let Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2} be two L-fuzzy formal contexts.
L-multimapping β : B1 −→ Int(C2), such that βt : A2 −→ Ext(C1), where
βt(a2)(o1) = β(o1)(a2) for any (o1, a2) ∈ B1 ×A2, is said to be an L-bond. Set
of all L-bonds beyween L-contexts C1 and C2 will be denoted by L-Bonds(C1, C2).

Lemma 2. Let Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2} be two L-fuzzy formal contexts.
Each set L-Bonds(C1, C2) and L-ChuCors(C1, C2) forms a complete lattice and,
moreover, there exists a dual isomorphism between them.

The dual isomorphism between bonds and Chu correspondences is based on
the following construction. Consider two L-fuzzy formal contexts Ci = 〈Bi, Ai, ri〉
for i ∈ {1, 2} and let β ∈ L-Bonds(C1, C2), then 〈ϕβL, ϕβR〉 such that for any
(o1, a2) ∈ B1 ×A2

ϕβL(o1) =↓2 (β(o1)) and ϕβR(a2) =↑1 (βt(a2))

is an L-Chu correspondence from L-ChuCors(C1, C2).
On the other hand, let ϕ ∈ L-ChuCors(C1, C2). Then βϕ defined as

βϕ(o1)(a2) =↓1 (ϕR(a2))(o1) =↑2 (ϕL(o1))(a2)

for any (o1, a2) ∈ B1 ×A2 is an L-bond from L-Bonds(C1, C2).
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2.3 Categorical relationship to fuzzy Galois connection

Categories ChuCors and L-ChuCors of classical or fuzzy formal contexts and
classical or fuzzy Chu correspondences are described in [9, 13]. Important cate-
gorical property of ∗-autonomism is also proved in mentioned papers. The con-
tinuation of categorical research in [10] resulted in a categorical equivalence of
L-ChuCors and a category L-CLLOS of so called completely lattice L-ordered
sets and monotone fuzzy Galois connections. Equivalence is proved by construct-
ing of equivalence functor between these categories.

Definition 7. Lets define a functor Γ : L-ChuCors −→ L-CLLOS in the fol-
lowing way:

1. Γ (C) = 〈〈L-FCL(C),≈〉,�〉 for any L-context C
2. Γ (ϕ) = 〈λϕL, λϕR〉 for any ϕ ∈ L-ChuCors(C1, C2) such that λϕL : FCL(C1) −→

FCL(C2) and λϕR : FCL(C2) −→ FCL(C1)

λϕL(〈f, ↑1 (f)〉) = 〈↓2↑2 (ϕL+(f)), ↑2 (ϕL+(f))〉
λϕR(〈↓2 (g), g〉) = 〈↓1 (ϕR+(g)), ↑1↓1 (ϕR+(g))〉

for any two L-concepts 〈f, ↑1 (f)〉 ∈ FCL(C1) and 〈↓2 (g), g〉 ∈ FCL(C2),
where for any multifunction ω : X −→ LY is ω+ : LX −→ LY defined as
ω+(f)(y) =

∨
x∈X f(x)⊗ ω(x)(y) for any f ∈ LX and y ∈ Y .

In [10] is proved that Γ is the equivalence functor. Hence, it holds for the
particular two L-concepts that

(
〈f, ↑1 (f)〉 �1 λ

ϕ
R(〈↓2 (g), g〉)

)
=
(
λϕL(〈f, ↑1 (f)〉) �2 〈↓2 (g), g〉

)
.

Lemma 3. Consider two L-contexts Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2} and let
ϕ ∈ L-ChuCors(C1, C2). A functor Γ (ϕ) is a fuzzy Galois connection between
〈〈FCL(C1),≈1〉,�1〉 and 〈〈FCL(C∗2 ),≈2〉,�2〉 where C∗2 = 〈A2, B2, r

t
2〉.

Proof. Due to order reversing of dual L-context C∗2 for any two L-concepts we

obtain
(
〈f, ↑1 (f)〉 �1 λ

ϕ
R(〈↓2 (g), g〉)

)
=
(
〈↓2 (g), g〉 �2 λ

ϕ
L(〈f, ↑1 (f)〉)

)
. ut

3 Formal concept analysis of second order

Once we have introduced preliminaries, the formal context of second order and
the corresponding results are presented now in details.

Definition 8. Consider two non-empty index sets I and J and an L-fuzzy for-
mal context 〈⋃i∈I Bi,

⋃
j∈J Aj , r〉, whereby

– Bi1 ∩Bi2 = ∅ for any i1, i2 ∈ I,
– Aj1 ∩Aj2 = ∅ for any j1, j2 ∈ J ,
– r :

⋃
i∈I Bi ×

⋃
j∈J Aj −→ L.
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Moreover, consider two non-empty sets of L-contexts notated

– {Ci = 〈Bi, Ti, pi〉 : i ∈ I}
– {Dj = 〈Oj , Aj , qj〉 : j ∈ J}.

Formal context of second order is a tuple

〈⋃

i∈I
Bi, {Ci; i ∈ I},

⋃

j∈J
Aj , {Dj ; j ∈ J},

⋃

(i,j)∈I×J
ri,j

〉
,

where ri,j : Bi × Aj −→ L defined as ri,j(o, a) = r(o, a) for any o ∈ Bi and
a ∈ Aj.

In what follows, consider the below used notation. Lets have an L-set f :∏
i∈I Xi −→ L for a non-empty universe set X =

⋃
i∈I Xi, where Xi1 ∩Xi2 = ∅

for any i1, i2 ∈ I. Then f i : Xi −→ L is defined as f i(x) = f(x) for an arbitrary
x ∈ Xi and i ∈ I.

With the help of functor Γ , we define the mappings between products of
fuzzy concept lattices of objects and attributes formal contexts of the following
form:

Definition 9. Lets define the mappings 〈⇑,⇓〉 as follows

⇑:
∏

i∈I
FCL(Ci) −→

∏

j∈J
FCL(Dj) and ⇓:

∏

j∈J
FCL(Dj) −→

∏

i∈I
FCL(Ci)

⇑ (Φ)j =
∧

i∈I
λijL(Φi), for any Φ ∈

∏

i∈I
FCL(Ci)

⇓ (Ψ)i =
∧

j∈J
λijR(Ψ j), for any Ψ ∈

∏

j∈J
FCL(Dj)

such that λij = 〈λijL, λijR〉 = Γ (ϕρij ), where

ρij =
∨
{β ∈ L-Bonds(Ci,Dj) : (∀(oi, aj) ∈ Bi ×Aj)β(oi)(aj) ≤ rij(oi, aj)}.

Lemma 4. Let {〈f, g〉} ∪ {〈fk, gk〉 : k ∈ K} be a non-empty set of L-concepts
of any L-context and K be a non-empty index set. Then

〈f, g〉 �
∧

k∈K
〈fk, gk〉 =

∧

k∈K
(〈f, g〉 � 〈fk, gk〉).

Proof. Let the L-context be of the form 〈B,A, r〉. Hence

〈f, g〉 �
∧

k∈K
〈fk, gk〉 =

∧

o∈B

(
f(o)→

( ∧

k∈K
fk

)
(o)
)

=
∧

o∈B

(
f(o)→

∧

k∈K
fk(o)

)

=
∧

k∈K

∧

o∈B

(
f(o)→ fk(o)

)
=
∧

k∈K

(
〈f, g〉 � 〈fk, gk〉

)
.

ut
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Lemma 5. Pair of mappings 〈⇑,⇓〉 forms a Galois connection between complete
lattices 〈∏i∈I FCL(Ci),vI〉 and 〈∏j∈J FCL(Dj),vJ〉.
Proof. Proof is provided in fuzzy ordering as a generalization of classical one.

Ψ vJ⇑ (Φ) =
∧

j∈J
(Ψ j �j⇑ (Φ)j) =

∧

j∈J

(
Ψ j �j

∧

i∈I
λijL(Φi)

)

=
∧

i∈I

∧

j∈J
(Ψ j �j λijL(Φi)) =

∧

i∈I

∧

j∈J
(Φi �i λijR(Ψ j))

=
∧

i∈I

(
Φi �i

∧

j∈J
λijR(Ψ j)

)
=
∧

i∈I
(Φi �i⇓ (Ψ)i)

= Φ vI⇓ (Ψ).

ut

3.1 Simplification

In this subsection will be presented a method that simplifies the previous con-
sideration.

Definition 10. Let Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2} be two L-fuzzy contexts and
let β be an arbitrary L-bond between C1 and C2. Consider the following pair of
mappings ↑β : LB1 −→ LA2 and ↓β : LA2 −→ LB1 such that

↑β (f)(a) =
∧

o∈B1

(f(o)→ β(o)(a)), ↓β (g)(o) =
∧

a∈A2

(g(a)→ β(o)(a))

for any f ∈ LB1 and g ∈ LA2 .

Lemma 6. Let Ci = 〈Bi, Ai, ri〉 for i ∈ {1, 2} be two L-fuzzy contexts and let
β be an arbitrary L-bond between C1 and C2. A pair 〈↑β , ↓β〉 forms a Galois
connection between complete lattices 〈Ext(C1),≤〉 and 〈Int(C2),≤〉, where ≤ is
ordering based on fuzzy sets inclusion.

Proof. Proof of the fact that 〈↑β , ↓β〉 forms a Galois connection between 〈LB1 ,≤〉
and 〈LA2 ,≤〉 is simple, 〈↑β , ↓β〉 is a pair of derivation operators for L-context
〈B1, A2, β

r〉, where binary L-relation βr is defined as βr(o1, a2) = β(o1)(a2).
Now, we will show that 〈↑β , ↓β〉 is a pair of mappings between complete

lattices of extents and intents of C1 and C2, respectively. First, let f be an
extent of C1.

↑β (f)(a) =
∧

o∈B1

(f(o)→ β(o)(a))

=
∧

o∈B1

(f(o)→↑2 (ϕβL(o))(a))

=
∧

o∈B1

(
f(o)→

∧

b∈B2

(ϕβL(o)(b)→ r2(b, a))
)
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=
∧

b∈B2

∧

o∈B1

(f(o)→ (ϕβL(o)(b)→ r2(b, a)))

=
∧

b∈B2

∧

o∈B1

((ϕβL(o)(b)⊗ f(o))→ r2(b, a)))

=
∧

b∈B2

( ∨

o∈B1

(ϕβL(o)(b)⊗ f(o))→ r2(b, a))
)

=
∧

b∈B2

(ϕβL+(f)(b)→ r2(b, a)))

=↑2 (ϕβL+(f))(a).

So ↑β (f) is an intent of C2.
Proof of ↓β (g) is an extent of C1 is easy to obtain similarly with equality

β(o)(a) =↓1 (ϕβR(o))(a). ut
We define an L-context such that its L-concept lattice is isomorphic to a

complete lattice of all second order formal concepts.

Definition 11. Let K be a second order formal context of the form

K =
〈⋃

i∈I
Bi, {Ci : i ∈ I},

⋃

j∈J
Aj , {Dj : j ∈ J},

⋃

(i,j)∈I×J
rij

〉
.

Lets define an L-context K̂

K̂ =
〈⋃

i∈I
Bi,

⋃

j∈J
Aj ,

⋃

(i,j)∈I×J
ρij

〉
,

where

ρij =
∨
{β ∈ L-Bonds(Ci,Dj) : (∀(oi, aj) ∈ Bi ×Aj)β(oi)(aj) ≤ rij(oi, aj)}.

Lemma 7. Concept lattices of K and K̂ are isomorphic.

Proof. Let 〈Φ, Ψ〉 be an L-concept of K̂ and o ∈ Bi.

Φi(o) = (↓K̂ (Ψ))i(o) =
∧

j∈J

∧

a∈Aj
(Ψ j(a)→ ρij(o)(a))

=
∧

j∈J

∧

a∈Aj
(Ψ j(a)→↓i (ϕρijR(a))(o))

=
∧

j∈J
↓i (ϕρijR+(Ψ j))(o).

Φi = (↓K̂ (Ψ))i =
∧

j∈J
↓i (ϕρijR+(Ψ j)) =

∧

j∈J
ext(λ

ϕρij
R (Ψ j))

= ext
(∧

j∈J
λ
ϕρij
R (Ψ j)

)
= ext(⇓ (Ψ)i),
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where Ψ
j

= 〈↓j (Ψ j), Ψ j〉 for any j ∈ J . Then Φ =⇓ (Ψ) and 〈Φ, Ψ〉 is a second
order concept of K. ut

4 Motivation example – solution

The motivation example introduced in Section 1 can be considered as the second
order formal context

〈{Anna,Bob,Cyril,David,Eva},F , {TV,W,Ce,R},H, r〉,

whereby r represents the L-relation from P. Firstly, we find a bond ρ that is the
closest to r.

P TV W Ce R
Anna • • •
Bob ◦ ◦ • •
Cyril ◦ • • ◦
David • • ◦
Erik • • ◦ •

ρ(P) TV W Ce R
Anna • • •
Bob ◦ ◦ • ◦
Cyril ◦ ◦ • ◦
David ◦
Erik ◦

There are just six (instead of twenty-eight L-concepts of P) L-concepts of
ρ(P) such that we can easily convert into the form of second order concepts. The
following table contains the list of the all second order concepts.

concepts of F concepts of H
{◦/A, •/B, •/C, ◦/D, ◦/E} {◦/TV, ◦/W, •/Ce, ◦/R}
{◦/A, •/B, •/C, ◦/D, ◦/E} {•/H1, /H2, ◦/H3, ◦/H4}
{•/A, •/B, •/C, •/D, •/E} { /TV, /W, ◦/Ce, /R}
{ /A, ◦/B, ◦/C, /D, /E} {•/H1, ◦/H2, •/H3, •/H4}
{•/A, •/B, •/C, ◦/D, ◦/E} {◦/TV, /W, •/Ce, ◦/R}
{◦/A, ◦/B, ◦/C, /D, /E} {•/H1, /H2, ◦/H3, •/H4}
{•/A, ◦/B, ◦/C, /D, /E} {•/TV, /W, •/Ce, •/R}
{•/A, ◦/B, ◦/C, /D, /E} {•/H1, /H2, /H3, •/H4}
{◦/A, ◦/B, ◦/C, /D, /E} {•/TV, ◦/W, •/Ce, •/R}
{•/A, •/B, •/C, ◦/D, ◦/E} {•/H1, /H2, /H3, ◦/H4}
{ /A, ◦/B, ◦/C, /D, /E} {•/TV, •/W, •/Ce, •/R}
{•/A, •/B, •/C, •/D, •/E} {•/H1, /H2, /H3, /H4}

The first concept can be interpreted as follows. Friends Bob and Cyril with
their common requirements should stay in hotel H1. They should stay also in
H3 and H4 with a little relaxation of their requirements. The fourth concept is
saying that Anna as a very lonely person should stay in H1 or H4. The second
concept includes the whole group of co-workers who have very poor common
requirements. Thus, all people should stay in an arbitrary hotel together.
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5 Connection to heterogeneous formal contexts

The fruitful idea is to view the second order formal context in terms of a het-
erogeneous formal context proposed in [2]. The corresponding notions of the
underlying structures are introduced now.

Definition 12. Heterogeneous formal context is a tuple 〈B,A,P, R,U ,V,�〉,
where

– B and A are non-empty sets,

– P = {〈Pb,a,≤Pb,a〉 : (b, a) ∈ B ×A} is a system of posets,

– R is a mapping from B × A such that R(b, a) ∈ Pb,a for any b ∈ B and
a ∈ A,

– U = {〈Ub,≤Ub〉 : b ∈ B} and V = {〈Va,≤Va〉 : a ∈ A} are systems of
complete latices,

– � = {◦b,a : (b, a) ∈ B × A} is a system of isotone and left-continuous
mappings ◦b,a : Ub × Va −→ Pb,a.

Lets describe our situation in terms of heterogeneous formal contexts. Below
is the translation:

– B and A will be the index sets I and J ,

– complete lattices Ui or Vj for any (i, j) ∈ B×A = I×J will be the complete
lattices 〈Ext(Ci),≤〉 and 〈Int(Dj),≤〉,

– Pi,j will be a complete lattice of all fuzzy relations from LBi×Aj ,
– any value of relation r will be a binary relation r(i, j) = ri,j ∈ LBi×Aj ,
– operation ◦i,j : Ext(Ci)× Int(Dj) −→ LBi×Aj is defined as

(f ◦i,j g)(b, a) = f(b)⊗ g(a)

for any f ∈ Ext(Ci) and g ∈ Int(Dj) and any (b, a) ∈ Bi ×Aj . The mapping
◦i,j is isotone due to isotonicity of ⊗.

Lemma 8. The mapping ◦i,j is left-continuous.

Proof. Let

(fk ◦ g)(b, a) = fk(b)⊗ g(a) ≤ m

for all k ∈ K and for some (b, a) ∈ B × A and m ∈ L. It is equivalent to
inequality fk(b) ≤ g(a)→ m for all k ∈ K. Hence,

∨
k∈K fk(b) ≤ g(a)→ m and

it is equivalent to

( ∨

k∈K
fk ◦ g

)
(b, a) =

∨

k∈K
fk(b)⊗ g(a) ≤ m.

Proof of left-continuity of the second argument is similar. ut
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Definition 13. Lets define a pair of derivation operators 〈↖,↘〉 of the follow-
ing form↖:

∏
i∈I Ext(Ci)→

∏
j∈J Int(Dj) and↘:

∏
j∈J Int(Dj)→

∏
i∈I Ext(Ci)

defined for heterogeneous formal context mentioned above as follows:

↖ (Φ)j =
∨
{g ∈ Int(Dj) : (∀i ∈ I)Φi ◦i,j g ≤ ri,j}

↘ (Ψ)i =
∨
{f ∈ Ext(Ci) : (∀j ∈ J)f ◦i,j Ψ j ≤ ri,j}

for any Φ ∈∏i∈I Ext(Ci) and any Ψ ∈∏j∈J Int(Dj).
Lemma 9. Let K = 〈⋃i∈I Bi, {Ci; i ∈ I},

⋃
j∈J Aj , {Dj ; j ∈ J},

⋃
(i,j)∈I×J ri,j〉

be a second order formal context. Then

↑K̂ (Φ) ≤↖ (Φ) and ↓K̂ (Ψ) ≤↘ (Ψ)

for any Φ ∈∏i∈I Ext(Ci) and Ψ ∈∏j∈J Int(Dj).
Proof. Let j ∈ J be arbitrary.

↑K̂ (Φ)j(a) =
∧

i∈I

∧

o∈Bi
(Φi(o)→ ρij(o)(a))

=
∨
{g ∈ Int(Dj) : (∀i ∈ I)(∀o ∈ Bi)Φi(o)⊗ g(a) ≤ ρij(o)(a)}.

Then

↑K̂ (Φ)j =
∨
{g ∈ Int(Dj) : (∀i ∈ I)(∀o ∈ Bi)Φi ◦ij g ≤ ρij}

because of ρij ≤ rij
≤
∨
{g ∈ Int(Dj) : (∀i ∈ I)(∀o ∈ Bi)Φi ◦ij g ≤ rij}

=↖ (Φ)j .

Hence ↑K̂ (Φ) ≤↖ (Φ). Similarly for ↓K̂ and ↘. ut

6 Connections to standard homogenic fuzzy operators

In this part, we focus on an appropriate generalization of the standard homogenic
fuzzy formal concept derivation operators in two different ways.

6.1 Singleton connection

Lemma 10. Lets have an L-fuzzy formal context 〈{x}, L, λ〉, where for an ar-
bitrary k ∈ L is ⊥x = λ(x, k) = k. Any value k ∈ L is an extent of ⊥x.

Proof. Let k be an arbitrary value from L.

↓↑ (k)(x) =
∧

m∈L
(↑ (k)(m)→ m) =

∧

m∈L
(
∧

x∈{x}
(k → m)→ m)
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=
∧

m∈L:m≥k
(1→ m) ∧

∧

m∈L:m<k
((k → m)→ m)

=
∧

m∈L:m≥k
m ∧

∧

m∈L:m<k
((k → m)→ m) = ?

∧

m∈L:m≥k
m = k (L is a complete lattice)

(k → m)→ m ≥ k (closure property)
∧

m∈L:m<k
((k → m)→ m) ≥ k

? = k

So ↓↑ (k) = k for any k ∈ L. ut
Lemma 11. Lets have an L-fuzzy formal context C = 〈B,A, r〉 with derivation
operators 〈↑, ↓〉. Lets have a second order formal context

K =
〈 ⋃

b∈B
{b}, {⊥b : b ∈ B},

⋃

a∈A
{a}, {⊥∗a : a ∈ A},

⋃

(b,a)∈B×A
r(b, a)

〉
.

Then concept lattices of C and K are isomorphic.

Proof. Let Φ ∈ ∏b∈B Ext(⊥b). By previous lemma is easy to see that Φ ∈ LB .
Moreover r(b, a) for any (b, a) ∈ B×A as an arbitrary value from L is an extent
of ⊥b and intent of ⊥∗a = 〈L, {a}, tλ〉. Hence any r(b, a) ∈ L-Bonds(⊥b,⊥∗a).

↑K̂ (Φ)(a) =
∧

b∈B
↑r(b,a) (Φ(o)) =

∧

b∈B
(Φ(o)→ r(o, a)) =↑ (Φ)(a).

Similarly for ↓K̂=↓. ut

6.2 6= connection

Moreover, an another connection is presented in this subsection. The connection
is based on the fact that concept lattice of 〈X,X, 6=〉 is isomorphic to LX in the
case that L is closed under double negation law.

Lemma 12. Lets have an L-fuzzy formal context X = 〈X,X, 6=〉, where L is
closed under double negation law. Then any L-set from LX is closed in X .

Proof. Lets have an arbitrary L-set f ∈ LX .

↑ (f)(x) =
∧

y∈X
(f(y)→ (y 6= x))

=
∧

y∈X:y 6=x
(f(y)→ 1) ∧ (f(x)→ (x 6= x))

= 1 ∧ ¬f(x) = ¬f(x)

Then ↓↑ (f)(x) = ¬¬f(x) = f(x). ut
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Lemma 13. Lets have an L-fuzzy formal context C = 〈B,A, r〉, where L is
closed under double negation law. Concept lattice of C is isomorphic to a concept
lattice of second order formal context K =

〈
B,B, A,A, r

〉
, where B = 〈B,B, 6=〉

and A = 〈A,A, 6=〉.

Proof. Index sets I and J are singletons in this case. So due to previous lemma
Φ ∈ Ext(B) = LB . ⇑ (Φ) =↑ρ (f) where ρ =

∨{β ∈ L-Bonds(B,A) : β ≤ r}.
Because of the previous lemma we know that any row and column or r is closed
in B and A, respectively. Hence r ∈ L-Bonds(B,A) and r = ρ.

Finally ↑K̂=↑. Similarly for ↓K̂=↓. ut
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15. J. Pócs. Note on generating fuzzy concept lattices via Galois connections. Infor-

mation Sciences 185 (1):128–136, 2012.
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