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Abstract. The most general algebraic structure of truth-values consid-
ered in the theory of fuzzy concept analysis to evaluate the attributes
and objects has been a lattice. However, in some examples arises the
necessity of a more general structure. In this paper we investigate the
use of multilattices as underlying set of truth-values for these attributes
and objects.

1 Introduction

The study of reasoning methods to work out with uncertainty, imprecise data
or incomplete information has been a trending topic in the recent years in order
to explain, in a better way, observed facts, specify statements, reasoning and/or
execute programs.

One important and powerful mathematical tool that has been used for this
purpose at theoretical level is fuzzy logic. From the applicative side, neural net-
works have a massively parallel architecture-based dynamics which are inspired
by the structure of human brain, adaptation capabilities, and fault tolerance.
The recent paradigm of soft computing promotes the use and integration of
different approaches for the problem solving.

Formal concept analysis, introduced by Wille in [23], is a useful tool for
qualitative data analysis and has become an appealing major research topic,
from both the theoretical and applied perspectives. What we pretend in this
paper is to present the multilattices as a basis on the area of formal concept
analysis and, specifically, what will lead us to what we have called fuzzy formal
concept multilattice.

There has been many approaches in order to generalise the classical con-
cept lattices given by Ganter and Wille [12] allowing some uncertainty in data.
The first fuzzy approach was proposed by Burusco and Fuentes-González [4]
where fuzzy concept lattices were first presented, and later further developed
by Pollandt [22] and Bělohlávek [1]. Other approaches emerge trying to work
with non-commutative fuzzy logic and similarity as we can see in the work of
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Georgescu and Popescu [13]. This approach, consisting in generalizing the equal-
ity relation and considering an alternative similarity relation, underlies in the
works of Bělohlávek [2], which considered L-equalities to extend the fuzzy con-
cept lattice. This approach was extended in an asymmetric way, although only
for the case of classical equality (L = {0, 1}) by Krajči, who introduced the
so-called generalized concepts lattices in [16,15].

Recently, a new approach has been proposed by Medina et al in [20,19] who
introduced the multi-adjoint concept lattices, joining the multi-adjoint philoso-
phy with concept lattices. To do this the authors needed to generalize the adjoint
pairs into what they called adjoint triples [6]. This new structure directly gen-
eralizes almost all the approaches previously cited.

On the other hand, the theory of multilattices arose trying to weaken the re-
strictions imposed on a (complete) lattice, namely, the “existence of least upper
bounds and greatest lower bounds” is relaxed to “existence of minimal upper
bounds and maximal lower bounds”. In this direction, several definitions have
been proposed in the mathematical literature of the structure so-called multi-
lattice [3,14].

Later on, an alternative notion of multilattice, with better properties re-
garding substructures than the previous definitions, has been introduced [5,17].
Moreover, this structure has proved to be an important tool in order to obtain
some advances in the theory of mechanized deduction in temporal logics.

Multilattices, in the sense of the paragraph above, also arise in a natural man-
ner in the research area concerning fuzzy extensions of logic programming [18].
For instance, one of the hypotheses of the main termination result for sorted
multi-adjoint logic programs [7] has been weakened only when the underlying
set of truth-values is a multilattice [8]; as far as we know, the question of pro-
viding a counter-example on a lattice remains open.

The main result introduced here is the presentation of multilattices as un-
derlying set where to evaluate the attributes, the objects and the relation in a
fuzzy environment to formal concept analysis, indeed, this leads us to see that
the set of “multilattice concepts” is a multilattice. We can see as well that if we
evaluate the objects or the attributes in a lattice and the other in a multilattice
what we have again a lattice not a multilattice as we could think at first.

The idea of using multilattices as underlying set of truth values arises us
since in real life many thigns are ordered in a way that we we know that some
objects are better than others but sometimes we can not choose which is the
best of them because they can have different properties. This idea can be seen
in the example we give in the last section of this paper where we consider a
group of hotels. It is logical to think that four-star hotels are better than three
star hotel, but sometimes we can not decide if a four-star hotel is better than
another four-star hotel since these can have different properties to be considered
like acommodation, location, price, etc., and one can be better in one property
and worse in other. This, as we have already said, is what have lead up to
consider multilattices because this structure deals better with objects which are
uncomparable.
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The plan of this paper is the following: in Section 2 we present the main
definitions and results to understand the paper. Section 3 presents the formal
concept multilattice; we also provide an example where this new structure can
be used in Section 4; the paper ends with some conclusions and prospects for
future work.

2 Preliminaries

In this first section we will set the basic notions required to the complete under-
standing of the paper. We will start with a bit of lattice and multilattice theory
and finished with concept lattice analysis.

One of the most structures used when hanging with fuzziness is a lattice,
this has been a very suitable in order to develop many theories. Although the
following definitions are well known, we will recall them here in order to make
this paper as selfcontained as possible. The definition of a lattice is given bellow.

Definition 1. By a complete lattice is understood a poset, (L,�), where every
subset of L has supremum and infimum.

When instead of the existence of both supremum and infimum for every
subset we only ask for the existence of one of them the notion of semilattice
arised.

Definition 2. By a complete lower semilattice is understood a poset, (L,�),
where every non-empty subset of L has infimum.

Definition 3. By a complete upper semilattice is a poset, (L,�), where every
non-empty subset of L has supremum.

Nevertheless, there is a closed relationship between lattices and semilattices,
indeed, if we have the existence of a top element in lower semilattices or a bottom
element in upper semilattices we have that they become lattices as the following
theorem states.

Theorem 1. A complete upper (lower) semilattice (L,�) with a minimum ele-
ment (maximum element ) is a complete lattice.

Once we have reminded the notions of lattice and semilattice we will pass to
define what a multilattice is. To get this we will start with some preliminaries
notions.

Definition 4. Let (P,≤) be a poset and K ⊆ P , we say that:

– K is called a chain if for every two elements x, y ∈ K we have that x ≤ y
or y ≤ x.

– K is called an antichain if none of its elements are comparable, i.e., for
every x, y ∈ K we have that x � y and y � x.
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Definition 5. A poset (P,≤) is called coherent if every chain has supremum
and infimum.

Once we have introduced these notions we can give the definition of a com-
plete multilattice.

Definition 6. A complete multilattice is a coherent poset without infinite an-
tichains, (M,≤), where for each subset, the set of its upper (lower) bounds has
minimal (maximal) elements.

Each minimal(maximal) element of the upper (lower) bounds of a subset is called
multisupremum(multinfimum). The set of all multisuprema(multinfima) will be
denoted by multisup(multinf).

Example 1. An example of a multilattice is given in figure 1.
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Fig. 1. Multilattice M6

In this multilattice we have that if we consider the subset {a, b} we have that
multinf{a, b} = ⊥ and multisup{a, b} = {c, d} while if we consider as subset
{c, d} we have that multinf{c, d} = {a, b} and multisup{a, b} = >

We will remind now the notion of adjoint pair we will use later [11,21].

Definition 7. Let (P1,≤1), (P2,≤2), (P3,≤3) be posets and &: P1 × P2 → P3,
← : P3 × P2 → P1, be mappings, then (&,←), is called an adjoint pair with
respect to P1, P2, P3 if:

– & is increasing in both arguments;
– ← are increasing in the first argument and decreasing in the second;
– x ≤1 z ← y iff x& y ≤3 z for all x ∈ P1, y ∈ P2 and z ∈ P3;

Now, we will pass to introduce a bit of fuzzy concept analysis. We will remind
first the notions of Galois connection and concept [9,10].

Definition 8. Let ↓ : P → Q and ↑ : Q → P be two maps between the posets
(P,≤) and (Q,≤). The pair (↑, ↓) is called a Galois connection if:

– p1 ≤ p2 implies p2
↓ ≤ p1↓ for every p1, p2 ∈ P ;

– q1 ≤ q2 implies q2
↑ ≤ q1↑ for every q1, q2 ∈ Q;
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– p ≤ p↑↓ and q ≤ q↓↑ for all p ∈ P and q ∈ Q;

An interesting property of a Galois connection (↑, ↓) is that ↓ = ↓↑↓ and
↑ = ↑↓↑.

Definition 9. A pair (p, q) is called a concept if p↓ = q and q↑ = p.

If P and Q are lattices we have as well the following result:

Theorem 2. [9] Let (L1,�1) and (L2,�2) be two complete lattices and (↑, ↓)
a Galois connection between them, then we have that the set C = {(x, y) | x ∈
L1, y ∈ L2, x

↓ = y, y↑ = x} is a complete lattice with the following ordering
(x1, y1) � (x2, y2) if and only if x1 �1 x2 (or equivalently y2 �2 y1), where the
supremum and the infimum are given bellow:

∧

i∈I
(xi, yi) =

(∧

i∈I
xi, (

∨

i∈I
yi)
↑↓
)

∨

i∈I
(xi, yi) =

(
(
∨

i∈I
xi)
↓↑,
∧

i∈I
yi

)

With all this notions now we can pass to the following section where we will
present concept multilattices.

3 Fuzzy formal concept multilattices

When working in concept analysis theory we always have two sets A and B
representing the attributes and the objects together with a relation between
them. In order to reach the concept multilattices these ones will be evaluated in
complete multilattices.

The first result we obtain concerning concept analysis in multilattices will be
crucial for our purpose. We will denote by MA

1 and MB
2 the sets of all mappings

from A to M1 and from B to M2 respectively.

Theorem 3. Let (M1,≤1) and (M2,≤2) be two complete multilattices, A and
B two sets and (↑, ↓) a Galois connection between MA

1 and MB
2 . If {(gi, fi)}i∈I

is a set of concepts we have that

multinf{fi↓ | i ∈ I} ⊆ (multisup{fi | i ∈ I})↓ (1)

multinf{gi↑ | i ∈ I} ⊆ (multisup{gi | i ∈ I})↑ (2)

where (multisup{fi | i ∈ I})↓ = {f↓mult | fmult ∈ multisup{fi | i ∈ I}} and
(multisup{gi | i ∈ I})↑ is given similarly.
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Proof. We will prove (1). Item (2) is proved in a similar way.
Let g ∈ multinf{fi↓ | i ∈ I} we have that g ≤1 fi

↓ for every i ∈ I. As ↑ is

decreasing we have that f↓↑i ≤2 g
↑, but the pair (↑, ↓) is a Galois connection so

we have that:

fi ≤2 (fi)
↓↑ ≤2 g

↑

Then there is fmult ∈ multisup{fi | i ∈ I} such that fmult ≤2 g↑. As ↓ is

decreasing we have that g↑↓ ≤1 f
↓
mult using again that (↑, ↓) is a Galois connection

we obtain that:

g ≤1 g
↑↓ ≤1 f

↓
mult (3)

On the other hand, we have that fmult ∈ multisup{fi | i ∈ I}, so fi ≤2 fmult for

every i ∈ I then, as ↓ is decreasing f↓mult ≤1 f
↓
i , for every i ∈ I, then f↓mult is a

lower bound of the set {fi↓ | i ∈ I}, but g ∈ multinf{fi↓ | i ∈ I} and g ≤1 f
↓
mult,

by (3). Therefore, by maximality of g we have that g = f↓mult.
Thus, we have proved that for every g ∈ multinf{fi↓ | i ∈ I} there is fmult ∈

multisup{fi | i ∈ I} such that g = f↓mult, which leads us to the result. ut
We cannot get always the equality in this theorem as we can see in the next

example:

Example 2. If we consider the multilattice of Fig. 1 and the folowing Galois
connection, ↑ = ↓ : M6→M6 defined as:

⊥↑ = > ; a↑ = b↑ = c↑ = c ; d↑ = ⊥ ; >↑ = ⊥

It is routine to prove that the pair (↑, ↓) is a Galois connection.
On one hand, we obtain that

multinf{a↑, b↑} = multinf{c} = c

However, on the other hand:

(multisup{a, b})↑ = ({c, d})↑ = {c↑, d↑} = {c,⊥}

which proves that we cannot get the equality always.

As a consequence of the previous theorem, we have that, given the set of
all concepts C = {(g, f) | f ∈ MA

1 , g ∈ MB
2 , g

↑ = f, f↓ = g}, and the ordering
defined as (g1, f1) ≤ (g2, f2) if and only if g1 ≤1 g2 (if and only if f2 ≤2 f1), then
(C,≤) is a complete multilattice which is a result similar to Theorem 2, but now
with respect to multilattices.

Theorem 4. If (M1,≤1) and (M2,≤2) be two complete multilattices, A and B
two sets and (↑, ↓) a Galois connection between MA

1 and MB
2 , then we have that

(C,≤) is a complete multilattice where for every set of concepts {(gi, fi)}i∈I :

multinf{(gi, fi)} = (multinf{gi}, (multinf{gi})↑) (4)

multisup{(gi, fi)} = ((multinf{fi})↓,multinf{fi}) (5)
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Proof. If we prove that they are concepts, then it is obvious that they are the
multisuprema and the multinfima due to the definition of the ordering in C.

By Theorem 3, we have that

multinf{gi} ⊆ (multisup{fi})↓ (6)

Hence, given g ∈ multinf{gi}, there exist f ∈ multisup{fi}, such that g = f↓.
Therefore, since (↑, ↓) is a Galois connection, g↑↓ = f↓↑↓ = f↓ = g.

Consequently, it is trivial that they are concepts. For the multisuprema the
proof is similar. The proof of coherence and the non-existence of anti-chains
comes directly from the definition of the ordering consider. ut

At this point we could think what would happen whether the set of objects
or the set of attributes are evaluated in a lattice while the other in a multilattice.
The answer to this is given by the following corollary.

Proposition 1. Considering the framework of the previous theorem, if M1 or
M2 is a lattice, then we have that C is a lattice.

Proof. If M1 is a lattice in the first equality of (4) the multinfimum becomes a
singleton so it is indeed an infimum. Hence, every set has an infimum and so
(C,≤) is a complete lower semilattice. Therefore, we only have to prove that
there is a maximum element >C in C.

Let g> ∈ MA
1 the map which sends every element of A to the maximum

element > of M1 and consider the pair (g>, g
↑
>). If we prove that it is a concept

then we have finished, since it is obvious that this element would be the maximum
element in C.

We only have to prove that g> = g↑↓> . As (↑, ↓) a Galois connection we have

that g> ≤1 g
↑↓
> and, as g>(a) = > for every element a ∈ A, we have that the

equality holds, i.e., g> = g↑↓> .
The proof for M2 being a lattice is similar. ut

The following section introduces a simple and particular context where we
can get a Galois connection from an adjoint pair what allows us to obtain a
concept multilattice.

4 A worked out example

The multilattice considered for the calculation in this example is the one given
in Fig. 2 together with the following adjoint pair (&,←).

x& y =





x if y = >
y if x = >
⊥ if x ∈ {⊥, b} or y ∈ {⊥, b}
a otherwise
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Fig. 2. Multirret́ıculo M6*

z ← y =





> if y ≤ z
z if y = >
b if y /∈ {⊥, b,>} and z ∈ {⊥, b}
e otherwise

It is routine calculation that (&,←) is, indeed, an adjoint pair, in which & is
commutative.

Imagine that we are going to travel to a city and we have to decide which
hotel is the best for us. In this example, in order to no complicate the calcula-
tion we will taking into account seven different hotels, as objects, and two at-
tributes, which will be price and situation. Hence, we have as set of objects B =
{H1, H2, H3, H4, H5, H6, H7} and as set of attributes A = {price, situation},
both evaluated in M6∗ and the M6-fuzzy relation, R : A× B → M6∗, between
them, defined in Table 1

Table 1. Relation R

R price situation

H1 d ⊥
H2 c a
H3 > b
H4 a d
H5 b e
H6 a b
H7 d c

Evaluating the hotels in a multilattice comes from the idea that the hotels
are ordered thinking of the number of stars they have. We can state, for example
that any four-star hotel is better than any three-star hotel, but if both hotels
are four-star ones we cannot distinguish between them at the beginning.
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In the case of the situation, we have that we can say one situations are
better than other but we cannot compare a situations that are for example one
kilometer from the downtown but in different directions.

In the case of prizes, happens more or less the same because we cannot
distinguish between prizes which are very similar.

If we see the relationship we have that R(H5,price) = b, R(H6,price) = a
means that the fifth and the sixth hotels have more or less the same prices but
we cannot decide which is best taking into account only their prizes.

For these reasons we have chosen multilattices for their evaluation.

We are trying to choose a hotel to stay in according to our preferences in
prizes and situation.

It is easy to check that for the adjoint pair (&,←) and for any mapping
f : A→M6∗ or g : B →M6∗ the following sets has infimum.

{R(a, b)← g(b) | b ∈ B}
{R(a, b)← f(a) | a ∈ A}

Hence, we can define the next Galois connection

g↑(a) = inf{R(a, b)← g(b) | b ∈ B}
f↓(b) = inf{R(a, b)← f(a) | a ∈ A}

The proof of (↓, ↑) being a Galois connection follows directly from the existence
of the infimum of these sets, that & is commutative and that the implication are
decreasing in the second argument.

Therefore, from Theorem 4 we have an fuzzy concept multilattice and if our
preferences are the following g(price) = a and g(situation) = d we have that for
H1.

g↑(H1) = inf{d← a,⊥ ← d} = inf{>, b} = b

And for the others:

g↑(H2) = e , g↑(H3) = b , g↑(H4) = > , g↑(H5) = b , g↑(H6) = b , g↑(H7) = e

On the other hand we have that

f↓↑(price) = inf{d← b, c← e,> ← b , a← > b← b, a← b, a← e}
= inf{>,>, a,>, e, e} = a

In a similar way we obtain that

f↓↑(situation) = d

Thus, according to out preference stablished by f , we have that our best choice
is H4, although H2 and H7 are really good ones too.
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5 Conclusions and future work

A first approach to fuzzy formal concept multilattices has been presented. This
paradigm arises as a more flexible setting than formal concept analysis frame-
work, as the introduced motivating example shows.

Moreover, several properties have been proved. For example, we have checked
that the concepts in the new framework form a complete multilattice and that if
we impose that one of the set of attributes or objects are evaluated in a lattice
and the other in a multilattice, then we obtain a complete lattice.

In the future, we will study general Galois connections which allows us to
get more concept multilattices. We will focus as well, when we have these Galois
connections, on getting a representation theorem for them to be able to get which
multilattices are isomorphic to concept multilattices.
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