
How Relational Concept Analysis Can Help to
Observe the Evolution of Business Class Models

A. Osman Guédi1,2,3, A. Miralles2,3, B. Amar2,
C. Nebut3, M. Huchard3, and T. Libourel4

1Université de Djibouti, Avenue Georges Clémenceau BP: 1904 Djibouti (REP)
2Tetis/Irstea, Maison de la télédétection, 500 rue JF Breton 34093 Montpellier Cdx 5

3LIRMM (CNRS et Univ. Montpellier), 161, rue Ada, F-34392 Montpellier Cdx 5
4Espace Dev, Maison de la télédétection, 500 rue JF Breton 34093 Montpellier Cdx 5

Abstract. The development of information systems follows a long and
complex process in which various actors are involved. We report an ex-
periment in which we observe the evolution of the analysis model of an
information system through 15 successive versions. We use indicators
on the underlying concept lattices built by applying Relational Concept
Analysis (RCA) to each version. RCA is an extension of FCA which
groups entities based on characteristics they share, including links to
other entities. It here helps in analyzing their evolution. From this expe-
rience, we establish recommendations to monitor and verify the proper
evolution of the analysis process.

Keywords: Relational Concept Analysis, Unified Modeling Language,
UML, Evolution, Model analysis, Metric, Indicator

1 Introduction

In thematic domains, like environment and territories, the development of infor-
mation systems often involves many actors and scientists with different (some-
times opposed) viewpoints on a complex and heterogeneous knowledge. The
analysis is often conducted during sessions with a different team each time,
interspersed with consolidation meetings to cross-check and merge various view-
points on business concepts or on subsets of UML (Unified Modeling Language)
models. Methods and tools are thus welcome to accompany the evolution of
systems.

To study the evolution of a system, classical model indicators can be used
such as the number of elements of various kinds (classes, methods, etc). How-
ever, those indicators do not reveal more complex evolutions such as the precision
in the description of model elements, or the level of abstraction and factoring.
We thus propose to base evolution analysis not only on classical indicators but
also on indicators provided by the application of Formal and Relational Con-
cept Analysis to the successive models. Indeed, Formal Concept Analysis [7]
groups together similar business concepts, highlights and brings out new, more
abstract, business concepts about which the scientists may not have thought,

c© Laszlo Szathmary, Uta Priss (Eds.): CLA 2012, pp. 139–150, 2012.
ISBN 978–84–695–5252–0, Universidad de Málaga (Dept. Matemática Aplicada)



since the scientists are not necessarily interested in the overall model (experi-
ence shows that scientists focus their analytical efforts on the parts of the model
they are familiar with or that is needed for their research). Furthermore, FCA
removes duplications in a systematic way, by creating new abstractions (within
a robust process that leads to a unique solution). The result of the FCA process
for a class model of an information system is the equivalent of a normal (non
redundant) form. FCA has been used over years for this purpose [9] and is used
in an iterative manner in Relational Concept Analysis (RCA [12]) to take into
account the richness of the relations between classes, attributes, methods, etc.
Because FCA produces a normal form, it offers a framework for comparing the
successive versions of the model, disregarding the potential lack of factoring and
of abstraction.

In this paper, we report such observation on the evolution of the class model
of an information system through 15 successive model versions of the system.
We observe a set of indicators, and establish recommendations to use those
indicators to monitor and verify the proper evolution of the analysis process.
The model under study, Pesticides, is described in Section 2. Section 3 explains
how lattices on class models can be built thanks to RCA. In Section 4, we
introduce indicators on the normal forms and we observe the evolution of those
indicators on Pesticides. We position our work relatively to the literature in
Section 5. Section 6 concludes the paper and gives perspectives of this work.

2 Case Study : the business model Pesticides

The project under study is called Environmental Information System for Pes-
ticides (EIS-Pesticides). It aims at defining an information system grouping to-
gether the knowledge and the information produced by two teams: the first
one (Transfer team), is specialized in the study of the transfer of pesticides to
the rivers and the second one (Practice team) mainly works on the agricultural
practices of farmers. UML is used to capitalize the knowledge of the themati-
cians within an analysis model which will be transformed into the schema of
the database. During this analysis phase, the adopted methodology consisted to
archive the models after each major change. This section answers two questions:
i) what was the Pesticides model "life" during the analysis phase? ii) what was
the evolution of the numbers of model elements?

2.1 A brief history of the Pesticides model

We thus have 15 versions for the Pesticides model [16]. The V0 is the result of
a first analysis of a set of documents and data from the Transfer Team. This
V0 model is free of superclasses. The V1 version has been produced during
the first analysis session with the Transfer team, where the composite design
pattern has been used to organize the hydrographic entities but also those of the
landscape. A model refactoring activity and a decomposition in three packages
lead to the V3 : superclasses have been added and several associations have

140 A. Osman Guédi et al.



been removed. During the next meeting, the model of agricultural activity was
detailed, producing a strong increase of the number of classes and consequently
the number of model elements (V4 model).

As the model on the activity of metrology was not correct, it was entirely
reanalyzed in the V5 model. A copy of the corresponding package was made in
order to avoid the loss of concepts, thus producing a strong increase of the model
elements. The V6 model results from business concept refinement. To obtain
V7, the project leader has removed the remaining concepts wrongly introduced
copying the activity model of metrology, thus the model elements number has
strongly decreased. The V8 model results from the assignment of a type to
all the attributes, and the specification of all the features of the associations
(name, cardinalities, name roles). In the V9 model, a pictogram-based language
[17, 18] was introduced for spatiality (point, line and polygon) and temporality
(time point and time period) notions, it has resulted in the deletion of attributes
and their substitution by stereotypes. The next versions (V10 to V14) result
from classical analysis : refactoring, errors corrections and specification of some
non-detailed items.

2.2 Evolution of the numbers of Pesticides model elements

In this section, we analyze the quantity of the included model elements on differ-
ent versions of the Pesticides model. We study the number of classes (#Classes1),
attributes (#Attributes), associations (#Associations) and the total. Figure 1
shows those metrics for the 15 versions.

0

100

200

300

400

500

600

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

#Classes

#Attributs

#Associations

#Elements

Fig. 1. Evolution of the different model elements

#Classes: The number of classes globally increases (except in a few steps):
from about 50 classes in V0 to more than 170 classes in V14. The increase from
V0 to V3 is explained by the deepening of V0. New business concepts continue
to be added up to V4, as the analysis progresses. At V5, classes are duplicated,
explaining the large increase. The decreasing between V6 and V7 corresponds
to the cleaning-up done by the project leader. Two stable plateaus are observed

1 #Classes means number of classes

Observing the Evolution of Class Models with RCA 141



from V8 to V10 and V11 to V14. The increase from V10 to V11 corresponds to
a big design activity.

#Attributes: When the attribute number increases, this may indicate that
business concepts are more precisely described. This is the case between V0 and
V1. The introduction of superclasses (more general business concepts) in V2
may explain the decrease of the attribute number, because redundancies may
have been removed. Large increase from V4 to V5 may be explained by the
duplication of a package and decrease between V6 and V7 by the cleaning-up
activity. From V10 to V11, a very slight increase indicates that actors have added
some precision on the existing business concepts.

#Associations: This metric is an indicator of the relational description of
the business concepts. A slight decrease is observed for the very first versions
(V0 to V3) followed by a moderate growth in recent versions of the model. This
reflects two work phases. In the first, the trainee model was completely restruc-
tured, and the decrease may be explained by the introduction of superclasses.
Associations may have been factored out on those superclasses. Then, new points
of view brought by the different actors may explain the growth.

3 Relational Concept Analysis and model normalization

Like FCA [10], the RCA framework can be used to produce normal forms for
UML models that eliminate redundant descriptions, add all the implicit special-
ization relationships and highlight relevant abstractions. Such a normalization
can be seen as the transposition of the normalization step [4] used for the de-
sign of relational databases. We illustrate these characteristics on the model of
Figure 2 which contains attribute redundancies (e.g. Device Type) and associa-
tions which deserve to be generalized (e.g. Groundwater Instrumentation and
Rainfall Instrumentation). An FCA approach applied to such a UML model
would, for example, describe the classes by their attributes names, the associa-
tions by their roles names and attributes by their type name. The description
is given in the form of binary tables called formal contexts. The result of FCA
is a lattice of concepts: the entities taken into account in the formal context
are grouped according to the properties they share. The discovered groups of
entities sharing properties are called concepts. Concepts are formed by maxi-
mal sets of entities (the extent of the concept) sharing maximal sets of common
properties (the intent of the concept). They are organized in a classification with
a lattice structure. The obtained lattice enables to find higher level superclasses
like Measuring Device which factorizes the attribute Device Type. But new
discovered abstractions (e.g. on classes) cannot be exploited to discover other
abstractions (e.g. on associations, etc.).

To go beyond, RCA extends FCA on a context family. This family, com-
posed of formal contexts and relational contexts, is called Relational Context
Family (RCF). RCA iterates on the RCF and builds several lattices, one for

142 A. Osman Guédi et al.



each context representing a model entity2, that are then used to normalize the
UML model. The normal form for the Measuring station model is shown in
Figure 3. As the relational contexts encode the relationships between the various
entities, we use them in particular to formalize (through roles) the UML notion
of association between classes. The iterative procedure of RCA first finds the
class Measuring Device (given by the expert), then the role of type Measuring
Device (Devices), and later the association Instrumentation (named by the
expert) which generalizes the associations Groundwater Instrumentation and
Rainfall Instrumentation. Due to the cardinality of the new association, the
semantics of the model is changed. We should add an OCL constraint to allow
only one instance of Rain Gauge and one instance of Piezometer. In this work,
we use the lattices that are at the origin of these normal forms as a framework
to better compare models and understand their evolution.

Station

0..1

Device

Groundwater InstrumentationMeasuring Station

Rain Gauge

Administrative Institute : string
Station Name : string

Tube High : real
Device Number : integer
Device Type : string

Piezometer

Tube Diameter : real
Device Number : integer
Device Type : stringStation

1

0..1

Device

1

InstrumentationRainfall

Fig. 2. Extract of the measuring station model

Station

Instrumentation Devices

0..2

Measuring Device

Rain GaugePiezometer

Device Number : integer
Device Type : string

Measuring Station

Administrative Institute : string
Station Name : string

Tube High : realTube Diameter : real

1

Fig. 3. Refactored model of the Measuring station model (see Fig. 2)

4 Evolution through the indicators on the lattices

4.1 Studied RCA configurations

We denote RCA configuration the choice of the elements, the features and the
relations that have to be taken into account to produce the normal form. We
here consider two configurations C1 and C2 composed of relations between the
main modeling elements including classes, attributes and associations. In UML,
navigability is a notion that applies to an associationR ⊆ Csource×Ctarget. IfR is

2 The contexts and lattices of this example are presented at the URL: http://www2.
lirmm.fr/~huchard/Documents/Papiers/RCA_Pesticide_model_example.pdf

Observing the Evolution of Class Models with RCA 143



navigable from Csource to Ctarget, this means that from an object of Csource, you
can reach (or query, or send a message to) an object of Ctarget. Furthermore, in
our current analysis we select only the roles that are named because they have
a stronger semantics. In the two defined configurations, the formal contexts
only describe the modeling elements with their names. To preserve inheritance
relationships, classes are also described by the names of their superclasses.

The RCA configuration C1 comprises the following elements: classes, at-
tributes, operations, associations and roles (described by their names). The rela-
tional contexts of the RCF are as follows: owns1 ⊆ classes×attributes, owns2 ⊆
classes× operations, owns3 ⊆ classes× roles, owns4 ⊆ Associations× roles.

The RCA configuration C2 extends the previous one by adding a fifth relation
hasType5 ⊆ roles×classes. This configuration leads to much more complex lat-
tices. After several experiments, we observed that the better informative results
are obtained at step 5, probably due to the structure of the UML meta-model3.
Our experiments on the complete process (beyond step 5) are very difficult to
interpret. It would be interesting to study this point.

As support tools for our experiments, we developed an UML profile in Ob-
jecteering4, that makes use of the framework eRCA (Eclipse Relational Concept
Analysis)5 for the lattice construction. We applied the two RCA configurations
on the 15 versions of the model Pesticides.

4.2 Lattice indicators evolution

In this section, we follow the evolution of Pesticides with information extracted
from lattices used as a normalization framework. For each considered kind of
UML model elements, we computed the following indicators to evaluate the
unicity of concepts within the model and the increase in new abstract concepts:

1. The ratio of Merged concepts: #Merge/#Model Elements. Merged concepts
have a proper extent that contains more than one element. They merge
several formal objects which have the same description. Note that proper
extents contain elements not present in the extent of sub-concepts.

2. The ratio of the New concepts: #New/#Model Elements. New concepts
are the concepts whose proper extent is empty. They correspond to the
factorization of formal attributes and no formal object is described exactly
by their formal attribute set.

We report only the analyses on classes attributes and associations because the
number of operations is small and roles behave more or less like associations.
The indicators have been computed on lattices at the end of each RCA step for
the 15 versions. Visually, the lattices of each version become more complex and
indicators help us to go into a detailed analysis.

3 To navigate from a class to another one via associations, five model elements are
crossed: Class, EndAssociation, Association, EndAssociation and Class.

4 http://www.objecteering.com/
5 http://code.google.com/p/erca/

144 A. Osman Guédi et al.



0%

2%

4%

6%

8%

10%

12%

14%

16%

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

Fig. 4. C1-C2: #Merge/#Classes

Indicators on Classes
#Merge/#Classes: This indicator counts the number of Merged concepts in
the class lattice and compares it to the class number in the model. These concepts
group classes with same name and same description. This indicator has the same
value in all the RCA steps in the two chosen configurations. In Figure 4, we
observe two peaks in V5 and V6 while, for other versions, the indicator is low.
Those peaks come from the existence of duplicated classes, e.g. in V5 we have
three classes called Active ingredient that have the same attributes. Indeed, in
V5 and V6, a package was duplicated during a working session. For versions
V0, V1, V2, V9 and V10, we do not observe merged concepts: each class owns
something that the others do not own. The more the ratio is high, the more we
have identical classes. This ratio should alert the designer on the versions where
it is high, especially if it does not decrease in the following versions. It is very
different from the case where we add many classes.
#New/#Classes: This indicator counts the number of New concepts in the
class lattice relatively to the class number in the model. The new concepts cor-
respond to new class abstractions that would be needed to factorize the similar
characteristics of the existing classes. The ratio differs for the two configurations
and changes during the RCA steps. It reflects the missing factorizations rate.
In the case of C1 (Fig. 5), we notice a progressive decrease although the class
number increases. The evolution suggests that even if there are more and more
classes, the abstraction level of the model improves. This is confirmed by the
fact that the project leader regularly factorized attributes and associations on
new added superclasses. The duplication done in V5-V6 degrades the abstrac-
tion level: the ratio increases in these steps. This suggests that in the duplicated
classes there were missing factorizations.

Analyzing Figure 6 (step 5), we notice peaks suggesting a lack of factoriza-
tion in V4, V5, V6 and V13, V14. In V4, this is explained by the addition of
many classes that lack factorization (also visible in C1, but more evident here
because of the inclusion of more information in the configuration). In V5 and
V6, this is the effect of the package duplication. In V13, associations have been
added, and the project leader a posteriori judges that they introduced missing
class factorization. Reversely, a significant fall is observed between V1 and V2,

Observing the Evolution of Class Models with RCA 145



0%

10%

20%

30%

40%

50%

60%

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

Fig. 5. C1: #New/#Classes

52%

53%

54%

55%

56%

57%

58%

59%

60%

61%

62%

63%

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

Fig. 6. C2-step 5: #New Con-
cepts/#Classes

due to the refactoring of many associations inserted in the first version by the
trainee. When the model is improved on the factorization of classes (resp. asso-
ciations), the ratio should decrease in C1 (resp. in C2-step5). When it increases,
the designer should be warned and (s)he should consider looking at duplications
in attributes and associations that (s)he should factorize in relevant superclasses.

Indicators on Attributes
#Merge/#Attributes: This metric gives the ratio of Merged attribute con-
cepts in the attribute lattice relatively to the attribute number (Fig. 7). These
concepts group attributes with same name (in a model, this often corresponds
to redundant attributes). A general decreasing tendency is observed, revealing
less attribute redundancy and confirming that factorization has been improved.
The ratio remains low. Peaks in V1 to V3 correspond to important additions
of attributes with similar names. The peak at versions V5 and V6 corresponds
to the mentioned package duplication. After V7, the attribute number slightly
increases, but the ratio decreases, thus the attributes that are introduced do not
introduce redundancy because either these are new properties or the designer
improves the model by removing the repetition of property names.

0%

5%

10%

15%

20%

25%

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

Fig. 7. C1-C2: Merge/Attributes

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

Fig. 8. C1-C2: New/Attributes

146 A. Osman Guédi et al.



#New/#Attributes: This ratio expresses the proportion of new attribute con-
cepts relatively to the attributes (Fig. 8). With the chosen configurations (C1
and C2), there are no new concepts in the attribute lattice. However, attributes
participate massively in the creation of new class and association abstractions.

Indicators on Associations
#Merge/#Associations: This ratio gives the number of Merged association
concepts relatively to the number of associations (Fig. 9). When decreasing ten-
dencies are observed, the designer confirmed that the model was improved by
association and role factorization. In V0 and V1 which not contain superclasses
and V5 and V6 where a lot of associations are duplicated, the ratio of merged
concepts is high because the factorization level is low.

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

Fig. 9. C1-C2: #Merge/#Associations

0%

5%

10%

15%

20%

25%

30%

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

Fig. 10. C1: #New/#Associations

40%

42%

44%

46%

48%

50%

52%

54%

V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14

Fig. 11. C2-step 5:
#New/#Associations

#New/#Associations: This ratio gives the number of New association con-
cepts relatively to the number of associations. It expresses the potentially missing

Observing the Evolution of Class Models with RCA 147



abstractions of associations. For C1 (Fig. 10), the global tendency in versions V0-
V9 is decreasing, suggesting that factorization improves. At the end, it slightly
grows, and analyzing the models, we noticed that the added associations needed
factorization. For C2 (Fig. 11), we notice that V1 lacks many class factorizations,
and comparatively not so many association factorizations. Actually, V1 version
is a rather chaotic transition from the trainee model to the current model. From
V2 to V4, there are very few associations, and classes and associations behave
differently. They do not much influence each other. After V7, classes and associ-
ations have the same behavior, indicating a needed factorization growing at the
end (V13 and V14).

4.3 Discussion

The evolution of the data encapsulation level is highlighted by the evolution
of the number of classes. The evolution of attribute number might indicate the
level of completion of the model. The relational aspect is shown by the evolution
of the numbers of roles and associations. But these numbers of elements cannot
indicate if we really completed the model or if we have introduced duplication
and redundancies. This is where lattice-based indicators help. By comparing the
results of indicators and the known "life" of the model, we can draw advice.
The evolution of the number of merged concepts indicates if identical or badly
described model elements have been introduced into a version. The evolution
of new concept numbers gives a measure of the increasing of the abstraction
level of the model or its degradation. The new class and association concepts
also indicate the effort needed to reach a normalized model, by computing the
number of abstractions necessary to factorize the entities.

5 Related Work

Several well known software metrics have been proposed for measuring the qual-
ity of inheritance [3, 15]. For example, DIT [3] measures the length of a longest
path from the root to a leaf of the inheritance tree; NRM [15] counts the number
of overridden methods (not inherited, not specialized). High inheritance use and
overriding correspond to an increasing complexity, but also to an improvement
of the abstraction level and of the opportunity to reuse methods and attributes
in subclasses. Empirical evaluations [2, 11] of these metrics assess if they can
predict faults in software. Here, we are not interested in detecting faults but
in following the construction of a class model covering a domain. Counting the
main modeling elements gives indications about the degree of reification of the
model and the degree of completion of the model. Indicators built using the
lattices assess the degree of reification, but more deeply analyze the abstraction
level of reified entities, their structuring and their description.

In [5], the proposed metrics measure the quality of factoring in inheritance hi-
erarchies by reference to an ideally factorized hierarchy obtained by constructing
a Galois subhierarchy on flattened class description. Here, we observe identified

148 A. Osman Guédi et al.



categories of concepts in lattices (Merged and New concepts) because they are
immediately understandable by the expert, who can exploit the resulting con-
cepts to build new classes or associations in his/her model.

Software metrics are included in frameworks dedicated to software evolution
analysis. In [14], an evolution matrix of classes is proposed. The size of classes
(in LOC) is represented by a variable-size box representing the class in a specific
version. Main evolution phases emerge (growth, stabilization, etc.) and specific
behavior of classes (e. g. permanently large classes) are highlighted. Pingzer et
al. [21] use Kiviat diagrams for visualizing metrics through several releases.

Other approaches use information on the releases [6], or on basic changes or
code churns [20]. In [13], authors propose a meta-heuristic-based approach for
determining an editing distance of minimal cost between two successive versions
of a class model. This distance counts the design changes between the versions
and is compared with traditional metrics for predicting defects. Here we want
to understand evolution and identify its main phases. We use information on
the model elements, and on the lattices to alert the designer on the lack of
details or the lack of abstraction of the model. In the database domain, several
approaches have been proposed for managing the evolution of object-oriented
database schema [1, 19, 22]. They mainly define the operations used for schema
evolution. An evolution combines a set of primitive evolution operations as well
as global rules used for validating or invalidating the evolution. Here we propose
a set of indicators for observing and understanding the evolution. We interpret
results w.r.t. the known evolution history and we establish recommendations.

6 Conclusion and perspectives

In this paper, we presented an observation of the evolution of the business class
model of an information system. Metrics on model elements and indicators on
the lattices generated with RCA are systematically computed on the 15 versions
of Pesticides model. The results of these metrics and indicators offer to the model
designer a dashboard that can be used to monitor the process of analysis of its
information system. Indicators based on RCA give a normalization framework
for the monitoring, highlighting aspects of the evolution that are not captured
by the model metrics. The observation of the evolution of the analysis process on
15 versions of the Pesticides model allowed recommendations to be extracted,
that are confirmed by the story of the model.

As future work, we will implement traceability links to better monitor and
understand the evolution of business concepts in the analysis process to help the
designer. Beyond the evolution analysis, and following tracks of previous work,
we would like to better control the new concepts that emerge from RCA to build
a normalized UML model.

References

1. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation
of schema evolution in object-oriented databases. In: SIGMOD Conference. pp.

Observing the Evolution of Class Models with RCA 149



311–322. ACM Press (1987)
2. Briand, L.C., Morasca, S., Basili, V.: Property-based software engineering mea-

surement. Transactions on Software Engineering 22(1), 68–86 (1996)
3. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE

Transactions on Software Engineering 20(6), 476–493 (Jun 1994)
4. Codd, E.F.: A relational model for large shared data banks. In: Comm. of ACM

13(6) (1970)
5. Dao, M., Huchard, M., Libourel, T., Roume, C., Leblanc, H.: A new approach

to factorization - introducing metrics. In: IEEE METRICS. pp. 227–236. IEEE
Computer Society (2002)

6. Gall, H., Jazayeri, M., Riva, C.: Visualizing software release histories: The use of
color and third dimension. In: ICSM. pp. 99–108 (1999)

7. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations. Sprin-
ger-Verlag (1999)

8. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis, Foundations
and Applications, Lecture Notes in Computer Science, vol. 3626. Springer (2005)

9. Godin, R., Mili, H.: Building and maintaining analysis-level class hierarchies using
galois lattices. In: OOPSLA. pp. 394–410 (1993)

10. Godin, R., Valtchev, P.: Formal concept analysis-based class hierarchy design in
object-oriented software development. In: Ganter et al. [8], pp. 304–323

11. Gyimóthy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics
on open source software for fault prediction. IEEE Trans. Software Eng. 31(10),
897–910 (2005)

12. Huchard, M., Hacene, M.R., Roume, C., Valtchev, P.: Relational concept discovery
in structured datasets. Ann. Math. Artif. Intell. 49(1-4), 39–76 (2007)

13. Kpodjedo, S., Ricca, F., Galinier, P., Guéhéneuc, Y.G., Antoniol, G.: Design evo-
lution metrics for defect prediction in object oriented systems. Empirical Software
Engineering 16(1), 141–175 (2011)

14. Lanza, M., Ducasse, S.: Understanding software evolution using a combination of
software visualization and software metrics. L’OBJET 8(1-2), 135–149 (2002)

15. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics: A Practical Guide.
Prentice-Hall (1994)

16. Miralles, A., Pinet, F., Carluer, N., Vernier, F., Bimonte, S., Lauvernet, C., Gouy,
V.: EIS Pesticides: an information system for data and knowledge capitalization
and analysis. In: Euraqua-PEER Scientific Conference, 26/10/2011 - 28/10/2011.
p. 1. Montpellier, FRA (2011)

17. Miralles, A., Libourel, T.: A new methodology to automate the transformation of
gis models in an iterative development process. In: Advances in Modelling Agri-
cultural Systems, vol. 25, pp. 19–36. Springer (2009)

18. Miralles, A., Pinet, F., Bédard, Y.: Describing spatio-temporal phenomena for
environmental system development: An overview of today’s needs and solutions.
International Journal of Agricultural and Environmental Information Systems 1(2),
64–84 (2010)

19. Monk, S., Sc, S.M.B.: A model for schema evolution in object-oriented database
systems. (1993)

20. Nagappan, N., Ball, T.: Use of relative code churn measures to predict system
defect density. In: ICSE. pp. 284–292. ACM (2005)

21. Pinzger, M., Gall, H., Fischer, M., Lanza, M.: Visualizing multiple evolution met-
rics. In: SOFTVIS. pp. 67–75. ACM (2005)

22. Skarra, A.H., Zdonik, S.B.: The management of changing types in an object-
oriented database. In: OOPSLA (1986)

150 A. Osman Guédi et al.


