
Distributed Closed Pattern Mining in
Multi-Relational Data based on Iceberg Query

Lattices: Some Preliminary Results

Hirohisa Seki? and Sho-ich Tanimoto

Dept. of Computer Science, Nagoya Inst. of Technology,
Showa-ku, Nagoya 466-8555, Japan

seki@nitech.ac.jp

Abstract. We study the problem of mining frequent closed patterns
in multi-relational databases in a distributed environment. In multi-
relational data mining (MRDM), relational patterns involve multiple re-
lations from a relational database, and they are typically represented in
datalog language (a class of first order logic). Our approach is based on
the notion of iceberg query lattices, a formulation of MRDM in terms of
formal concept analysis (FCA), and we apply it to a distributed mining
setting. We assume that a database considered contains a special predi-
cate called key , which determines the entities of interest and what is to be
counted, and that each datalog query contains an atom key, where vari-
ables in a query are linked to a given target object corresponding to the
key. We show that the iceberg query lattice in this case can be defined
similarly in the literature. Next, given two local databases (horizontal
partitions) and their sets of closed patterns (concepts), we show that the
subposition operator, which constructs a global Galois (concept) lattice
from the direct product of two lattices studied in the literature, can be
utilized to generate the set of closed patterns in the global database. The
correctness of our algorithm is shown, and some preliminary experimen-
tal results using a MapReduce framework are also given.

1 Introduction

Multi-relational data mining (MRDM) has been extensively studied for more
than a decade (e.g., [5, 6] and references therein). The research topics discussed
in the conventional data mining have been considered in this more expressive
framework of MRDM, where data and patterns (or queries) are represented in
the form of logical formulae such as Datalog (a class of first order logic). In
contrast to the traditional data mining dealing with rather simple patterns such
as itemsets, the expressive formalism of MRDM allows us to use more complex
and structured data in a uniform way, including trees and graphs in particular,
and multi-relational patterns in general.

? This work was partially supported by JSPS Grant-in-Aid for Scientific Research (C)
24500171 and the Kayamori Foundation of Information Science Advancement.

c© Laszlo Szathmary, Uta Priss (Eds.): CLA 2012, pp. 115–126, 2012.
ISBN 978–84–695–5252–0, Universidad de Málaga (Dept. Matemática Aplicada)

On the other hand, Formal Concept Analysis (FCA) has been developed as a
field of applied mathematics based on a clear mathematization of the notions of
concept and conceptual hierarchy [7]. It has attracted much interest from various
application areas including, among others, data mining, knowledge acquisition
and software engineering (e.g., [8]).

Stumme [20] has proposed the notion of iceberg query lattices, which com-
bines the notions of the above two fields, i.e., MRDM and FCA; Iceberg query
lattices combine the notion of frequent datalog queries in MRDM with iceberg
concept lattices (or frequent closed itemsets) in FCA. Then, it has been shown
that we can apply the “full arsenal” of FCA-based methods to frequent queries,
thereby allowing us to mine and visualize relational association rules. Condensed
representations such as closed patterns and free patterns in MRDM have been
also studied in c-armr [4], and in RelLCM2 [9].

In this paper, we study the problem of mining closed queries in multi-
relational data based on these precursors. We apply the notion of iceberg query
lattices to a distributed mining setting. The assumption that a given dataset
is distributed and stored in different sites is reasonable, because we will not be
able to move local datasets into a centralized site due to too much data size
and/or privacy concerns. We also assume that a database considered contains
a special predicate called key (e.g., [3, 4]), and that each datalog query is sup-
posed to contain an atom key, where variables in a query are linked to a given
target object corresponding to the key. Using an key atom, we can define the
notion of the frequency of a datalog query, since the key atom determines the
entities of interest and what is to be counted. We show that the iceberg query
lattice in this case can be defined similarly in the literature. Next, given two local
databases (horizontal partitions) and their sets of closed queries (concepts), we
show that the we can construct the set of closed queries in the global database,
by using subposition operator [7, 23], which constructs a global Galois (concept)
lattice from the direct product of two lattices. We also present some preliminary
experimental results using a distributed framework of MapReduce [2].

The organization of the rest of this paper is as follows. After summarizing
some basic notations and definitions in FCA in Sect. 2, we reconsider the notion
of iceberg query lattices with key in Sect. 3. We then explain our approach to
distributed closed query mining in MRDB in Sect. 4. In Section 5, we show the
effectiveness of our method by some preliminary experimental results. Finally,
we give a summary of this work in Section 6.

2 Preliminaries: Formal Concept Analysis

We assume that the reader is familiar with the basic notions of Formal Concept
Analysis (FCA), which are found in [7]. However, we recall some of the important
definitions and notations.

Definition 1. A (formal) context K = (O,A, I) consists of a set O of objects,
a set A of attributes, and a binary relation I ⊆ O × A.

116 Hirohisa Seki and Sho-ich Tanimoto

The mapping f : P(O) → P(A) is given by f(X) = {a ∈ A | ∀o ∈ X :
(o, a) ∈ I}. The mapping g : P(A) → P(O) is given by g(Y) = {o ∈ O | ∀a ∈
Y : (o, a) ∈ I}.

If it is clear from the context whether f or g is meant, then we abbreviate
both f(·) and g(·) just by ′. In particular, Y ′′ stands for f(g(Y)).

A (formal) concept is a pair (X,Y) with X ⊆ O, Y ⊆ A, X ′ = Y, and Y ′ =
X. X is called extent , and Y is called intent of the concept. The set CK of all
concepts of K together with the partial order (X1, Y1) ≤ (X2, Y2) ↔ X1 ⊆ X2

(which is equivalent to Y1 ⊇ Y2) is called the concept lattice of K. 2

In FCA [7], a set of context-oriented operators has been studied, including
apposition/subposition operators, and they are extensively studied by Valtchev
and Missaoui [23, 24]. The following definitions and lemma are due to [23].

Definition 2. Let K1 = (O1, A, I1) and K2 = (O2, A, I2) be two contexts with
the same set of attributes A. Then the context K = (O1 ·∪O2, A, I1 ·∪I2) is called
the subposition of K1 and K2, denoted by K = K1

K2
.

Usually, the extent of K is set to the disjoint union (denoted by ·∪) of the
involved context extents, and this constraint is suitable for our current study.

Let Ki (i = 1, 2) be a context, and Li the corresponding lattice. The direct
product of a pair of lattices L1 and L2, denoted by L× = L1 × L2, is itself a
lattice L× = 〈CK× , ≤×〉, where CK× = CK1 × CK2 , and (c1, c2) ≤× (c1, c2) ⇔
c1 ≤L1 c1 and c2 ≤L2 c2.

Any concept of L can be projected upon the concept lattice, L1 (L2) by
restricting its extent to the set of “visible” objects, e.g., those in O1 (O2), re-
spectively. The resulting mapping constitutes an order homomorphism between
L and the direct product [7].

Definition 3. The function ϕ : CK → CK× maps a concept from the global
lattice into a pair of concepts of the partial lattices by splitting its extent over
the partial context object sets O1 and O2:

ϕ((X,Y)) = ((X ∩ O1, (X ∩ O1)
′), (X ∩ O2, (X ∩ O2)

′)).

From the above definitions, we have the following property [23]:

Lemma 1. [23] For any global concept c = (X,Y) and its image ϕ(c) =
((X1, Y1), (X2, Y2)), it holds that X = X1 ∪ X2 and Y = Y1 ∩ Y2. 2

Example 1. Consider a context K in Fig. 1 (upper left). The concept lattice CK
derived from K is shown in the right. Let K1, K2 (lower right of the figure) be
a horizontal decomposition of K, where O1 = {1, 2} and O2 = {3, 4}. Then, K
is the subposition of K1 and K2, i.e., K = K1

K2
. The concept lattices CK1 (CK2)

derived from K1 (K2) are shown in the right, respectively.
Consider a global concept c = (123, d) in CK. Then, ϕ(c) = ((12, bd), (3, acd)),

and we have from Lemma 1 that {123} = {12} ∪ {3} and {d} = {bd} ∩ {acd}. 2

Distributed Closed Pattern Mining in Multi-Relational Data 117

K
a b c d

1 × ×
2 × × × ×
3 × × ×
4 ×

∅

1234

c

234

d

123

acd

23

bd

12

abcd

2

K1

a b c d

1 × ×
2 × × × ×

K2

a b c d

3 × × ×
4 ×

bd

12

abcd

2

c

34

acd

3

abcd

∅

Fig. 1. Upper: A Context K and the Hasse diagram of the concept lattice derived from
K. Lower: A horizontal decomposition K1, K2 of K, and the Hasse diagrams of the
concept lattices derived from K1, K2.

FCA provides a framework for frequent itemset mining (FIM), where the
intent of a concept corresponds to a closed itemset. The subposition operator will
be readily used for mining frequent closed itemsets (FCIs) in a global transaction
database D from the local FCIs from two disjoint (horizontal) partitions D1 and
D2, provided that we mine all the partitions with an (absolute) support being
set to 1, i.e. when we consider as frequent any itemset which occur at least once
in D. In fact, Lucchese et al. [15] show the following property:

Theorem 1 (Lucchese et al. [15]). Let D be transaction database, and D1,
D2 two disjoint (horizontal) partitions of D. Let C be the set of FCIs of D, and
C1 (C2) the set of local FCIs of D1 (D2), respectively. Then, C is computed from
C1 and C2 as C = (C1 ∪ C2) ∪ {C1 ∩ C2 | (C1, C2) ∈ (C1 × C2)}. 2

Namely, C is obtained by collecting the closed itemsets contained in C1 and
C2, and intersecting them to obtain further ones. It is easy to see that this exactly
corresponds to Lemma 1 based on the subposition operator. In the following, we
will apply the subposition operator to a more expressive framework of MRDM.

3 Iceberg Query Lattices in Multi-Relational DM

3.1 Multi-Relational Data Mining

In the task of frequent pattern mining in multi-relational databases, we assume
that we have a given database r, a language of patterns, and a notion of frequency
which measures how often a pattern occurs in the database. We use Datalog

118 Hirohisa Seki and Sho-ich Tanimoto

Customer

key

allen
carol
diana
fred

Parent

SR. JR.

allen bill
allen jim
carol bill
diana eve
fred eve
fred hera

Buys

key item

allen pizza
carol pizza
diana cake
fred cake

Male

person

bill
jim

Female

person

eve
hera

Fig. 2. An Example of Datalog Database r with customer relation as a key

to represent data and patterns. We assume some familiarity with the notions
of logic programming (e.g., [14, 16]), although we introduce some notions and
terminology in the following.

An atom (or literal) is an expression of the form p(t1,tn), where p is a
predicate (or relation) of arity n, denoted by p/n, and each ti is a term, i.e., a
constant or a variable.

A substitution θ = {X1/t1, . . . , Xn/tn} is an assignment of terms to variables.
The result of applying a substitution θ to an expression E is the expression Eθ,
where all occurrences of variables Vi have been simultaneously replaced by the
corresponding terms ti in θ. The set of variables occurring in E is denoted by
Var(E).

A pattern is expressed as a conjunction of atoms (literals) l1∧· · ·∧ln, denoted
simply by l1, . . . , ln. A pattern is sometimes called a query . Let C be a pattern
(i.e., a conjunction) and θ a substitution of Var(C). When Cθ is logically entailed
by a database r, we write it by r |= Cθ. Let answerset(C, r) be the set of
substitutions satisfying r |= Cθ. We will represent conjunctions in list notation,
i.e., [l1, . . . , ln]. For a conjunction C and an atom p, we denote by [C, p] the
conjunction that results from adding p after the last element of C.

In multi-relational data mining, one of predicates is often specified as a key
(or target), which determines the entities of interest and what is to be counted.

Example 2. Let r be a multi-relational DB in Fig. 2, which consists of five rela-
tions, including Customer,Parent, Buys and so on. For each relation, we intro-
duce a corresponding predicate, e.g., customer for relation Customer.

Let P be a pattern of the form: customer(X), parent(X,Y), buys(X, pizza).
Pθ is logically entailed by r, if there exists a tuple (a1, a2) such that a1 ∈
Customer, (a1, a2) ∈ Parent, and (a1, pizza) ∈ Buys. Then, answerset(P, r) =
{{X/allen, Y/bill}, {X/allen, Y/jim}, {X/carol , Y/bill}}. 2

As explained in Sect. 1, in a typical task of MRDM, a user is usually expected
to specify a special predicate key (or target) (e.g., [3, 4]). The key is an atom
which determines the entities of interest and what is to be counted. The key
(target) is thus to be present in all patterns considered. In Example 2, the key
is predicate customer .

Distributed Closed Pattern Mining in Multi-Relational Data 119

A pattern containing a key is not always meaningful to be mined. For ex-
ample, let C = [customer(X), parent(X,Y), buys(Z, pizza)] be a conjunction in
Example 2. Variable Z in C is not linked to variable X in key atom customer(X);
an object represented by Z will have nothing to do with key object X. It will be
inappropriate to consider such a conjunction as an intended pattern to mine. In
ILP, the following notion of linked literals [10] is a standard one to specify the
so-called language bias.

Definition 4 (Linked Literal). [10] Let key(X) be a key atom and l a literal.
l is said to be linked to key(X), if either X ∈ Var(l) or there exists a literal l1
such that l is linked to key(X) and Var(l1) ∩ Var(l) 6= ∅. 2

Given a database r and a key atom key(X), we assume that there are prede-
fined finite sets of predicate (resp. variables; resp. constant symbols), and that,
for each literal l in a conjunction C, it is constructed using the predefined sets.
Moreover, each pattern C of conjunctions to be mined satisfies the following
conditions: key(X) ∈ C and, for each l ∈ C, l is linked to key(X). In the follow-
ing, we denote by Q the set of queries (or patterns) satisfying the above bias
condition.

Let r be a database and Q be a query containing a key atom key(X). Then,
the support (or frequency) of C, denoted by supp(Q, r, key), is defined as:

supp(Q, r, key) =
|{θkey | θ ∈ answerset(Q, r)}|

|answerset(key(X), r)| ,

where θkey is the restriction of θ = {X/t, . . . } w. r. t. key(X), defined by θkey =
{X/t} for some term t. The numerator in the above formula is called the support
count (or absolute support). Q is said to be frequent , if supp(Q, r, key) is no less
than some user defined threshold min sup.

3.2 Iceberg Query Lattices with Key

We now consider the notion of a formal context in MRDM, following [20].

Definition 5. [20] Let r be a datalog database and Q a set of datalog queries.
The formal context associated to r and Q is defined by Kr, Q = (Or, Q, Ar, Q, Ir, Q),
where Or, Q = {θ | θ is a grounding substitution for all Q ∈ Q}, and Ar, Q = Q,
and (θ,Q) ∈ Ir, Q if and only if θ ∈ answerset(Q, r). 2

Each θ ∈ answerset(Q, r) is often called an occurrence of Q in r. We denote by
O(Q; r) the set of the occurrences of Q in r, namely, O(Q; r) = answerset(Q, r).

From this formal context, we can define the concept lattice the same way as
in [20]. We first introduce an equivalence relation ∼r on the set of queries: Two
queries Q1 and Q2 are said to be equivalent with respect to database r if and
only if answerset(Q1, r) = answerset(Q2, r).

120 Hirohisa Seki and Sho-ich Tanimoto

Definition 6 (Closed Query). Let r be a datalog database and ∼r the equiv-
alence relation on a set of datalog queries Q. A query (or pattern) Q is said to be
closed (w.r. t. r and Q), iff Q is the most specific query among the equivalence
class to which it belongs: {Q1 ∈ Q | Q ∼r Q1}. 2

For any query Q1, its closure is a closed query Q such that Q is the most
specific query among {Q ∈ Q | Q ∼r Q1}. Since it uniquely exists, we denote it
by Clo(Q1; r). Note that Var(Q1) = Var(Clo(Q1; r)) by definition. We refer to
this as the range-restricted condition here.

Stumme [20] showed that the set of frequent closed queries forms a lattice.
In our framework, it is necessary to take our bias condition into consideration.
To do that, we employ the well-known notion of the most specific generalization
(or least generalization) [18, 16].

For queries Q1 and Q2, we denote by lg(Q1, Q2) the least generalization of
Q1 and Q2. Moreover, the join of Q1 and Q2, denoted by Q1 ∨ Q2, is defined
as: Q1 ∨ Q2 = lg(Q1, Q2)|Q, where, for a query Q, Q|Q is the restriction of Q to
Q, defined by a conjunction consisting of every literal l in Q which is linked to
key(X), i.e., deleting every literal in Q not linked to key(X).

Definition 7. [20] Let r be a datalog database and Q a set of datalog queries.
The iceberg query lattice associated to r and Q for minsupp ∈ [0, 1] is defined as:
Cr, Q = ({Q ∈ Q | Q is closed w.r.t. r and Q, and Q is frequent}, |=), where |=
is the usual logical implication. 2

Theorem 2. Let r be a datalog database and Q a set of datalog queries where
all queries contain an atom key and they are linked. Then, Cr, Q is a ∨-semi-
lattice.

Proof. (Sketch) Let Q1, Q2 be frequent closed queries in Q. Then, it is easy to
see that their least generalization lg(Q1, Q2) is closed and frequent. However,
it might not be linked to key(X). For example, consider that Q1 (Q2) is of the
form: Q1 = key(X), p(X,Y),m(Y) (Q2 = key(X), q(X,Y),m(Y)), respectively.
Then, lg(Q1, Q2) = key(X),m(Y), which is not linked to key(X), although it is
a closed query. In this case, Q1 ∨ Q2 = lg(Q1, Q2)|Q = key(X), which satisfies
the bias condition from the definition. We can show that the resulting Q1 ∨ Q2

is in fact a closed query in the sense of Def. 6. 2

Example 3. Continued from Example 2. Fig. 3 shows the iceberg query lattice
associated to r in Ex. 2 and Q with the support count 1, where each query Q ∈ Q
has customer(X) as a key atom, denoted by key(X) for short, Var(Q) ⊆ {X,Y }
and the 2nd argument of predicate buys is a constant. 2

4 Distributed Closed Pattern Mining in MRDB

Our purpose in this work is to mine global concepts in a distributed setting,
where a global database is supposed to be horizontally partitioned appropri-
ately, and stored possibly in different sites. Our approach is to first perform the

Distributed Closed Pattern Mining in Multi-Relational Data 121

key(X)

{a, c, d, f}

key(X), buys(X, pizza)

{a, c}

key(X), parent(X, Y)

{(a, b), (a, j), (c, b),
(d, e), (f, e), (f, h)}

key(X), buys(X, cake)

{d, f}

key(X), buys(X, pizza),
parent(X, Y),male(Y)

{(a, b), (a, j), (c, b)}

key(X), buys(X, cake),
parent(X, Y), female(Y)

{(d, e), (f, e), (f, h)}

Fig. 3. The Iceberg Query Lattice Associated to r in Ex. 2: In the figure, a substitution
θ = {X/t1, Y/t2} (resp., θ = {X/t1}) in an occurrence set is denoted simply by (t1, t2)
(resp., t1). The name of each person in r is abbreviated to its first character.

computations of local concepts on each partition of the global DB, and then
combine the local concepts by using the subposition operator.

4.1 Horizontal Decomposition of MRDB

We first consider the notion of a horizontal decomposition of a multi-relational
DB. Since a multi-relational DB consists of multiple relations, its horizontal
decomposition is not immediately clear.

Definition 8. Let r be a multi-relational datalog database with a key predicate
key . We call a pair r1, r2 a horizontal decomposition of r, if

1. keyr = keyr1
·∪ keyr2

, i.e., the key relation keyr in r is disjointly decomposed
into keyr1

and keyr2
in r1 and r2, respectively, and

2. for any query Q, answerset(Q, r) = answerset(Q, r1) ∪ answerset(Q, r2). 2

The second condition in the above states that the relations other than keyr

are decomposed so that any answer substitution in answerset(Q, r) is computed
either in r1 or r2, thereby being preserved in this horizontal decomposition.

Given a horizontal decomposition of a multi-relational DB, we can utilize
any preferable concept (or closed pattern) mining algorithm for computing lo-
cal concepts on each partition, as long as the mining algorithm is applicable
to MRDM and its resulting patterns satisfy our bias condition. For example,
Stumme [20] discussed the algorithm called Titanic [21], which is based on a
level-wise approach. We use here an algorithm called ffLCM [19], which is based
on the notion of closure extension due to Pasquier et al. [17] in FIM, and then
elaborated by Uno et al. [22].

122 Hirohisa Seki and Sho-ich Tanimoto

4.2 Subposition Operator in MRDM

We now present the counterpart to Lemma 1 in closed pattern mining in MRDB.
We first modify the mapping ϕ in Def. 3 suitably for our purpose.

Definition 9. Let r be a datalog database, and r1, r2 a horizontal decompo-
sition of r. Let (O(Q; r), Q) be a concept in r, i.e., Q is a closed query and
O(Q; r) = answerset(Q, r). Then,

ϕ̃((O(Q; r), Q)) = ((O(Q; r1),Clo(Q; r1)), (O(Q; r2), Clo(Q, r2))).

To give the counterpart to Lemma 1 in MRDM, we need another definition
of join. Let Q1 and Q2 be queries which contain the same set V of variables, i.e.,
Var(Q1) = Var(Q2) = V. We define Q1 ∨RR Q2 = lg(Q1, Q2)|V,Q, where, for
a query Q, Q|V,Q is the restriction of Q to V and Q, defined by a conjunction
consisting of every literal l in Q such that Var(l) ⊆ V and l is linked to key ,
i.e., Q|V,Q is constructed from Q by deleting every literal in Q which contains a
variable not in V, then deleting every remaining literal not linked to key .

Theorem 3. Let r be a datalog database, and r1, r2 a horizontal decomposi-
tion of r. For any global concept c = (O(Q; r), Q) in r, and its image ϕ̃(c) =
((O(Q1; r1), Q1), (O(Q2; r2), Q2)), it holds that

O(Q; r) = O(Q1; r1) ∪ O(Q2; r2) and Q = Q1 ∨RR Q2.

Remark 1. We omit the proof here, since we can prove the theorem similarly to
[23]. Instead, we give an example which will be helpful to understand why we
need an extra provision for considering the least generalization in this case.

Let Q be a query of the form: key(A), p(A,B). Suppose that Q1 (Q2) is a
query of the form: Q1 = key(A), p(A,B), q(A, B) (Q2 = key(A), p(A,B), q(B,A)),
respectively. Then, lg(Q1, Q2) = key(A), p(A,B), q(C,D), where C and D are
newly introduced variables in the least generalization. In this case, since Var(Q) =
Var(Q1) = Var(Q2) = {A, B}, Q1 ∨RR Q2 is key(A), p(A,B), which coincides
with Q.

Finally, we note that, in the case of transaction databases, the above theorem
coincides with Theorem 1 in Sect. 2. 2

Example 4. Continued from Example 3. We consider a horizontal decomposition
r1, r2 of r such that the key relation keyr (i.e., Customer) in r is decomposed
into keyr1

= {allen, carol} and keyr2
= {dian, fred}, and the other relations than

Customer are decomposed so that they satisfy the second condition of Def. 8.

Let Q be a pattern of the form: [key(X), parent(X,Y)] in Fig. 3. We have
that Q1 = Clo(Q; r1) = [Q, buys(X, pizza),male(Y)], and Q2 = Clo(Q; r2) =
[Q, buys(X, cake), female(Y)]. Then, it holds that Q = Q1 ∨RR Q2. 2

Distributed Closed Pattern Mining in Multi-Relational Data 123

5 Distributed Mining Using MapReduce Framework

Since the computation of local concepts can be done independently, it is expected
that our algorithm is amenable to data-parallelism. We have therefore imple-
mented our algorithm using MapReduce framework [2], although any framework
supporting data-parallelism will do for our purpose.

In MapReduce framework, the user expresses the computation in terms of
two functions: map and reduce. The map function takes an input key/value pair
and produces a set of intermediate key/value pairs. Then, the set of intermediate
key/value pairs are passed to the reduce function. The reduce function accepts
an intermediate key and a set of values for that key, and it then merges (or
aggregate) these values together to form a possibly smaller set of values.

However, our use of MapReduce framework is very simple; We use map op-
eration to each local DB to compute a set of its local concepts. An intermediate
key/value pair simply consists of (DB id , Cid), where Cid is the set of local con-
cepts of DB id . We then apply a reduce operation which simply combines the
derived results to form an input to the subsequent subposition operator. We thus
simply exploited map for computing local concepts independently. We employed
Hadoop1,an open source implementation of MapReduce.

We now present some preliminary results of our experiments. We imple-
mented our algorithm by using Java 1.6.0 22. Experiments were performed on 6
PCs with Intel Core i5 processors running at 2.8GHz, 8GB of main memory, and
8MB of L2 cache, working under Ubuntu 11.04. We used Hadoop 0.20.2 using 6
PCs, and 2 mappers working on each PC.

Fig. 4 summarizes the results of the execution time for a test data on the
mutagenicity prediction,2 containing 30 chemical compounds. Each compound
is represented by a set of facts using predicates such as atom, bond , for example.
The size of the set of predicate symbols is 12. The size of key atom (active(X))
is 230, and minimum support min sup = 1

230 . We assume that patterns contain
at most 4 variables and they contain no constant symbols. The number of the
concepts mined is 4, 831.

Fig. 4 shows that the execution times t1 for mining local concepts are reduced
almost linearly with the number of partitions from 1 (i.e., no partitioning) to 8.
When the number of partitions is 16, the speed-up did not scale well compared to
the other cases. This is a reasonable result; Due to the restriction of our current
experiment environment, we used 6 PCs. Therefore, at most 12 mappers are
simultaneously available. On the other hand, the execution times t2 for merging
local concepts to obtain global concepts increase almost linearly with the number
p of partitions from 1 (i.e., no partitioning) to 16. This is also reasonable; the
number of subposition operators applied is (p − 1) when we have p partitions.

1 Hadoop: Open source implementation of MapReduce. http://
lucene.apache.org/hadoop/.

2 http://www.comlab.ox.ac.uk/activities/machinelearning/mutagenesis.html

124 Hirohisa Seki and Sho-ich Tanimoto

12,000

Time for Mining Local DBs: t1

10,000

g

Time for Merging: t2

8,000

im
e
 [

s]

Total Execution Time: t1 + t2

6,000

e
c
u

ti
o
n

 T
4,000E

x
e

2,000

0

1 2 4 8 16

N f P titiNo. of Partitions

Fig. 4. Execution Time

6 Concluding Remarks

We have studied the problem of mining frequent closed patterns in multi-relational
databases in a distributed environment. To do that, we have first reconsidered
the notion of iceberg query lattices, where each datalog query contains an atom
key, and the variables in a query are linked to the key. We have then proposed
the notion of a horizontal decomposition of a given MRDB, and explained how
the subposition operator can be utilized to generate the set of closed queries in
the global database from the two sets of local closed queries in the two parti-
tions. We have exemplified the effectiveness of our method by some preliminary
experimental results using Hadoop.

As discussed in [1], efficiency and scalability have been major concerns in
MRDM. Krajca et al. [11, 12] have proposed algorithms which allow us to com-
pute search trees for concepts simultaneously either in parallel or in a distributed
manner. Since their approaches are orthogonal to ours, it would be beneficial to
employ their algorithms for computing local concepts in our method.

In this work, we have confined ourselves to horizontal partitions of a global
context. It will be interesting to study vertical partitioning and their mixture in
MRDM, where the apposition operator studied by Valtchev et al. [24] will play
an important role. Our future work includes developing an efficient algorithm for
handling such a general case, as well as accumulating more experimental results
on different MRDBs to confirm the effectiveness of our subposition operator.

Acknowledgement The authors would like to thank anonymous reviewers for
their useful comments on our paper. The authors are grateful to Seiji Yamazaki
for preparing the experiments in this paper.

Distributed Closed Pattern Mining in Multi-Relational Data 125

References

1. Blockeel, H., Sebag, M.: Scalability and efficiency in multi-relational data mining.
SIGKDD Explorations Newsletter 2003, Vol.4, Issue 2, pp.1-14 (2003)

2. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM, Vol. 51, No. 1, pp.107–113, 2008.

3. Dehaspe, L.: Frequent pattern discovery in first-order logic, PhD thesis, Dept. Com-
puter Science, Katholieke Universiteit Leuven, 1998.

4. De Raedt, L., Ramon, J.: Condensed representations for Inductive Logic Program-
ming. In: Proc. KR’04, pp. 438-446 (2004)

5. Dzeroski, S.: Multi-Relational Data Mining: An Introduction. SIGKDD Explo-
rations Newsletter 2003, Vol.5, Issue 1, pp.1-16 (2003)

6. Dzeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer-Verlag, Inc. 2001.
7. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.

Springer, 1999.
8. Ganter, B., Stumme, G., Wille, R.: Formal Concept Analysis, Foundations and

Applications. LNCS 3626, Springer, 2005.
9. Garriga,G. C., Khardon, R., De Raedt, L.: On Mining Closed Sets in Multi-

Relational Data. IJCAI 2007, pp.804-809 (2007)
10. Helft, N.: Induction as nonmonotonic inference. In Proc. KR’89, pp. 149–156, 1989.
11. Krajca, P., Vychodil, V.: Distributed Algorithm for Computing Formal Concepts

Using Map-Reduce Framework, IDA ’09, Springer-Verlag, pp. 333–344, 2009.
12. Krajca, P., Outrata, J., Vychodil, V.: Parallel algorithm for computing fixpoints

of Galois connections, AMAI, Vol. 59, No. 2, pp. 257–272, Kluwer Academic Pub.,
2010.

13. Kuznetsov, S. O., Obiedkov, S. A.: Comparing performance of algorithms for gen-
erating concept lattices. J. Exp. Theor. Artif. Intell., 14(2-3):189.216, 2002.

14. Lloyd, J. W.: Foundations of Logic Programming, Springer, 1987, Second edition.
15. Lucchese, C., Orlando, S., Rergo, R.: Distributed Mining of Frequent Closed Item-

sets: Some Preliminary Results. International Workshop on High Performance and
Distributed Mining (2005).

16. Nienhuys-Cheng, S-H., de Wolf, R.: Foundations of Inductive Logic Programming,
LNAI 1228, Springer, 1997.

17. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering Frequent Closed
Itemsets for Association Rules. Proc. ICDT’99, LNAI 3245, pp. 398-416 (1999)

18. Plotkin, G.D.: A Note on Inductive Generalization. Machine Intelligence, Vol. 5,
pp. 153-163, 1970.

19. Seki, H., Honda, Y., Nagano, S.: On Enumerating Frequent Closed Patterns with
Key in Muti-relational Data. LNAI 6332, pp. 72-86 (2010)

20. Stumme, G.: Iceberg Query Lattices for Datalog. In Conceptual Structures at
Work, LNCS 3127, Springer-Verlag, pp. 109-125, 2004.

21. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing Iceberg
Concept Lattices with Titanic. J. KDE 42(2), 2002, pp. 189-222.

22. Uno, T., Asai, T. Uchida, Y., Arimura, H.: An Efficient Algorithm for Enumerating
Closed Patterns in Transaction Databases. Proc. DS’04, LNAI 3245, pp. 16-31 (2004)

23. Valtchev, P., Missaoui, R.: Building Concept (Galois) Lattices from Parts: Gen-
eralizing the Incremental Methods. In Proc. of the 9th Int’l. Conf. on Conceptual
Structures: Broadening the Base (ICCS ’01), Springer-Verlag, London, UK, 290-303.

24. Valtchev, P., Missaoui, R., Pierre Lebrun, P.: A Partition-based Approach towards
Constructing Galois (Concept) Lattices. Discrete Mathematics 256(3): 801-829 (2002)

126 Hirohisa Seki and Sho-ich Tanimoto

