
A Software Tool to Transform Relational
Databases in Order to Mine Functional

Dependencies in it Using Formal Concept
Analysis

Viorica Varga1 and Katalin Tünde Jánosi Rancz2

1 Babeş-Bolyai University, Department of Computer Science, Cluj-Napoca, Romania
2 Sapientia University, Department of Mathematics and Informatics, Târgu-Mures,

Romania

Abstract. The theory of Formal Concept Analysis offers an algebraic
approach to data analysis and knowledge processing. The notion of de-
pendencies between attributes in a many-valued context has been intro-
duced in [3], by Ganter and Wille. J. Hereth (2002) introduces the power
context family resulting from the canonical translation of a relational
database. Regarding to this power context family, he defines the formal
context of functional dependencies. In this context, implications hold for
functional dependencies. We propose a software tool, which constructs
the formal context of functional dependencies, and it builds the concept
lattice and determines the implications in the context, which syntac-
tically are the same as functional dependencies in the analyzed table.
The software can be used in relational database design and for detecting
functional dependencies in existing tables, respectively.

1 Introduction

The goal of relational database design is to generate a set of relation schemas
that allows us to store information without unnecessary redundancy. Concep-
tual database design gives us a set of relation schemas and integrity constraints
that can be regarded as a good starting point for the final database design. In
order to ensure the integrity constraints more fully than in the case of Entity
Relationship model, the initial design must be refined. Functional dependencies
form an important class of integrity constraints. The relation scheme obtained
by translating the Entity-Relationship model is a good starting point, but we
still need to develop new techniques to detect possible redundancies in the pre-
liminary relation scheme. The normal form satisfied by a relation is a measure of
the redundancy in the relation. In order to analyze the normal form of a relation
we need to detect the functional dependencies that are present in the relation.

The theory of Formal Concept Analysis offers an algebraic approach to data
analysis and knowledge processing. The notion of dependencies between at-
tributes in a many-valued context has been introduced in [3], by Ganter and
Wille. J. Hereth (2002) investigates how some basic concepts from database

c© Radim Belohlavek, Sergei O. Kuznetsov (Eds.): CLA 2008 (Posters), pp. 1–8,
Palacký University, Olomouc, 2008.

theory translate into the language of Formal Concept Analysis. He introduces
the power context family resulting from the canonical translation of a relational
database. Regarding this power context family, he defines the formal context of
functional dependencies. In this context, implications hold for functional depen-
dencies. Priss (2005) presents the visualization of normal forms using concept
lattices, where the notion of functional dependencies is life-line. Baixeries (2004)
gives an interesting framework to mine functional dependencies using Formal
Context Analysis. Detection of functional dependencies seems to be an actual
theme and a challenging problem, see [8].

This paper proposes a software named FCAFuncDepMine, which constructs
the formal context of functional dependencies, uses Conexp to build the concept
lattice and to determine the implications in this context, which are syntactically
the same as functional dependencies in the analyzed table. The software can be
used in relational database design and for detecting functional dependencies in
existing tables, respectively.

In the next section we introduce the necessary theoretical notions for the
translation from a relational database to a power context family and the formal
context of functional dependencies using [4], [1].

2 Preliminaries

In relational databases the data is stored in data tables. The structure of a rela-
tional data table can be given in unnamed or in named perspective. In the case
of the named perspective the columns of the table which are called attributes are
given by names, while in unnamed perspective they are given only by position.

Let D be a set, called the domain of the database, that may include the set of
integers, strings, and Boolean values. A data table of the relational database with
i attributes is a subset of D× . . .×D︸ ︷︷ ︸

i−times

, it can be seen as a set of i-tuples, beeing

in fact the rows of the table. i is called the arity of the table. The following
definition is very basic, e.g. we do not address the question of different value
domains for different attributes, we use the unnamed perspective.

Definition 1. We define a relational database to be a tuple D := (D, T) with
D being the domain of the database and T being the set of data tables in the
database. A data table is any element T ∈ ∪i∈IN0P

(
Di

)
. The arity of T is

i ∈ IN0 such that T ∈ P
(
Di

)
and is denoted by arity(T).

The operations on the relational model are based on algebra or on logic. The
data integrity constraints of the relational model appear as functional depen-
dencies. In relational database design the normalization theory is used to avoid
redundancy. Normal forms use the notion of functional dependencies. The fol-
lowing definition uses the projection relational operator, see any database theory
book [1], [7].

2 Viorica Varga and Katalin Tünde Jánosi Rancz

Definition 2. Let T be a data table and X, Y ⊆ IN0 its columns given by posi-
tion. Then T fulfills the functional dependency X → Y , if for all tuples s, t ∈ T ,
condition πX (s) = πX (t) implies that also πY (s) = πY (t).

In order to define the functional dependency in a formal context, we need
the notion of Power Context Family.

Definition 3. A power context family −→IK := (IKn)n∈IN0
is a family of formal

contexts IKk := (Gk,Mk, Ik) such that Gk ⊆ (G0)
k for k = 1, 2, The formal

contexts IKk with k ≥ 1 are called relational contexts. The power context family−→IK is said to be limited of type n ∈ IN0 if −→IK = (IK0, IK1, ..., IKn), otherwise, it is
called unlimited.

The following definition from [4] gives the method to construct the power context
family resulting from a relational database.

Definition 4. The power context family −→IK (D) resulting from the canonical
database translation of the relational database D := (D, T) is constructed in
the following way: we set IK0 := (D, ∅, ∅) and, for k ≥ 1, let Gk be the set of all
k-ary tuples and Mk ⊆ T be the set of all data tables of arity k. The relation Ik

is defined by (g,m) ∈ Ik :⇔ g ∈ m.

The formal context of functional dependencies is defined in the following way
in [4].

Definition 5. Let −→IK (D) be a power context family, and let m ∈ Mk be an
attribute of the kth context. Then the formal context of functional dependencies
of m with regard to −→IK (D) is defined as

FD
(
m,
−→IK (D)

)
:=

(
mIk ×mIk , { 1, 2, ..., k}, J

)
with ((g, h) , i) ∈ J :⇔ πi (g) = πi (h) with g, h ∈ mIk and i ∈ { 1, 2, ..., k}.

In order to mine functional dependencies in the context defined in definition
5, we need the following proposition (see [4]).

Proposition 1. Let D be a relational database and m a k-ary table in D. For
two sets X, Y ⊆ { 1, ..., k} we have the following assertion: The columns Y
are functionally dependent from the columns X if and only if X → Y is an
implication in FD

(
m,
−→
K (D)

)
.

More detailed explanation and examples can be read in [5].

3 Software proposal

We propose a software named FCAFuncDepMine to mine functional dependen-
cies in a relational table. It can be used for

A Software Tool to Transform Relational Databases in Order to Mine
Functional Dependencies in it Using Formal Concept Analysis

3

– relational database design;
– mining functional dependencies in an existing table.

The software constructs the context of functional dependencies of a table.
Regarding Definition 5 the columns (named attributes) of the table will be the
attributes of the context, the context’s objects are the tuple pairs of the table.
The top of the concept lattice corresponds to tuple pairs in which there are no
common values of the corresponding table attributes. Pairs of form (t, t), where t
is a tuple of the table, have all attributes in common, these objects will arrive in
the bottom of the lattice. In order to detect functional dependencies, we use the
software Conexp [9], to build the concept lattice from the constructed context
and to generate the implication base.

3.1 Table design and significant tuple introduction

In case of first approach - when the user introduces the structure of the table to be
designed and provides some significant tuples - the input file *.cex interpretable
by Conexp is generated as follows:

Let T be a table with columns corresponding to attributes: a1, a2, ..., an. We
insert rows in the table, which will be stored in an xml file, then we build the for-
mal context of functional dependencies to find existing functional dependencies
as implications in the constructed table. In order to optimize the construction
of the formal context of functional dependencies, we build inverted index files
for every attribute.

We use the following notations for the jth inverted file, which contains the
different values of the attribute aj : v1j , v2j , ..., vmj and the row numbers asso-
ciated to each value where the corresponding attribute value appears, see Table
1.

Value Row numbers

v1j rnr1
1j , rnr2

1j , ...
v2j rnr1

2j , rnr2
2j , ...

...
vmj rnr1

mj , rnr2
mj , ...

Table 1. Inverted index InvIndj

By using the previous considerations and parallel generation of inverted index
files, Algorithm 1 builds the context of functional dependencies. More examples
and explanations about the method can be found in [5].

4 Viorica Varga and Katalin Tünde Jánosi Rancz

Algorithm 1
for each inserted row in table T do

begin
let k be the number of row
let ek1, ek2, ..., ekn be the attribute values of row k
for j:=1 to n do // for every attribute value

begin
search ekj in the j-th inverted index file //search the attribute value

// in the corresponding inverted file
if find, let vlj be the value in the inverted file

such that ekj = vlj then
begin // k is added to the list of row numbers for value vlj

build the array list alkj = {rnr1
lj , rnr2

lj , ...}
add k in alkj

add k in the j-th inverted index in the list of row numbers
for value vlj

end
else //value ekj doesn’t exist in the corresponding inverted index

//we insert it, k is the first row with value ekj of attribute j
insert new line in the j-th inverted index file with values (ekj , k)

end
// In order to insert tuple pairs as rows in the cex file:

build alk =
n⋃

j=1

alkj //alk contains the row numbers,

// which have attributes in common with row k
//if alk is empty, no row will be inserted in cex file
if alk 6= ∅ then

for s = 1 to count(alk) do
insert in cex file tuple (k, alk(s))

end

3.2 Mining functional dependencies in existing databases

In real world applications many databases are already designed. The developer
may realize that the database is not well designed and tends to analyze it. The
project manager can verify if the database designer works correctly. The aim of
our software tool is to connect to an existing database by giving the type and the
name of the database, a login name and password, then the software offers a list
of identified table names that can be selected for possible functional dependencies
examination. In the actual version we can connect to Oracle, MySQL and MS
SQL Server.

Let T be this table having attributes A1, . . . , An. The top of the concept
lattice corresponds to tuple pairs in which there are no common values of the
corresponding attributes. A lot of pairs of this kind may be present. Pairs which
have all attributes in common, will arrive in the bottom of the lattice.

A Software Tool to Transform Relational Databases in Order to Mine
Functional Dependencies in it Using Formal Concept Analysis

5

We test concept lattices omitting tuple pairs in the top and the bottom of
the lattice. During this test we do not find the same lattice as that obtained with
these special tuple pairs. In order not to alter the implications, we generate only
a few (but not all) of these pairs. On the other hand, we need pairs of tuples of
table T, where at least one (but not all) of the attributes has the same value.

The connection being established and table T selected to analyze the existing
functional dependencies, the program has to execute the next SELECT - SQL
statement:

SELECT T1.A1,...,T1.An,T2.A1,...,T2.An
FROM T T1, T T2
WHERE (T1.A1=T2.A1 OR ... OR T1.An=T2.An)
AND (T1.A1<>T2.A1 OR ... OR T1.An<>T2.An)

Both (s, u) and (u, s) pairs of tuples will appear in the result, but we need
only one of these.

If the table’s primary key P1, P2, ..., Pk(k ≥ 1) is declared (see [7] for the
definition of primary key), then in order to include only one of these pairs, we
complete the statement’s WHERE condition in case of k = 1 with:

AND (T1.P1 < T2.P1)

or if k > 1 with

AND (T1.P1k < T2.P1k)

where P1k denotes the string concatenation of the primary key’s component
attributes, respectively.

An existing table may have a very large number of tuples. In this version
of our software we use Conexp, which is not able to handle very large context
tables. An input set for Conexp that consists of 15 000 selected tuple pairs is
processed in a reasonable time (some seconds), but if the size of the input set is
larger than 20 000, Conexp will fail. To solve this problem, in the construction
of these tuple pairs, in our software the user can set the limit of the selected
tuples.

Constructing a clustered index on one of the attributes can speed up the
execution of the SELECT statement. The advantage of using this SELECT
command is that every Database Management System (DBMS) will generate
an optimized execution plan.

Example 1. Let us consider an example. The table:

OrderDetail [CustomerID, CompanyName, City, Address, Phone,
OrderID, OrderDate, ProductID, UnitPrice, Quantity]

stores orders of different customers with detail information such as product ID,
price and quantity, too. CompanyName is the name of customer, Address is the
customer’s address and the City is his city. In Fig. 1 is represented the concept
lattice for FD

(
OrderDetail,

−→IK(Engross)
)
.

6 Viorica Varga and Katalin Tünde Jánosi Rancz

Fig. 1. Concept lattice for the context of functional dependencies
FD

(
OrderDetail,

−→
IK(Engross)

)
with 19000 rows in the context

The implications in this lattice, which correspond to functional dependencies
in the table can be seen as follows: the concept Phone, Address, CompanyName,
CustomerID is a subconcept of concept City. This means that in every tuple
pair where the CustomerID field has the same value, the name of the City is
the same. The same reason for attributes Phone, Address, CompanyName. So we
have the following implications which correspond to functional dependencies in
the table:

CustomerID →City
Phone →City
Address →City
CompanyName → City

Concept with OrderID is a subconcept of concept Phone, Address, Company-
Name, CustomerID and of concept OrderDate too. So we can read the following
functional dependencies.

OrderID →CustomerID
OrderID →CompanyName
OrderID →Address
OrderID →Phone
OrderID →OrderDate

The implication base given by software Conexp is illustrated in Fig.2. The
user can make attribute exploration to decide which implications are valid. The
number before the implication can help us. The implications labeled with larger
numbers usually are best used in detecting functional dependencies.

A Software Tool to Transform Relational Databases in Order to Mine
Functional Dependencies in it Using Formal Concept Analysis

7

Fig. 2. Implications which correspond to functional dependencies in the table OrderDe-
tail given by the software

4 Further research

Further we tend to analyze the functional dependencies obtained, to construct
the closure of these implications and to give a correct database scheme by using
an upgraded version of the proposed software .

5 Acknowledgments

We thank Uta Priss, Joachim Hereth and Cristian Sacarea for their precious
guidance and Andras Benczur for the idea of using inverted index files.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of databases. Addison-Wesley, Read-
ing - Menlo - New York (1995)

2. Baixeries, J.: A formal concept analysis framework to mine functional dependencies,
Workshop on Mathematical Methods for Learning, Villa Geno, Como, Italy, (2004).

3. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin-Heidelberg-New York. (1999)

4. Hereth, J.: Relational Scaling and Databases. Proceedings of the 10th Interna-
tional Conference on Conceptual Structures: Integration and Interfaces LNCS 2393,
Springer Verlag (2002) 62–76

5. Janosi Rancz, K. T., Varga, V.: A method for mining functional dependencies in
relational database design using FCA. Studia Universitatis ”Babes-Bolyai” Cluj-
Napoca, Informatica, vol. LIII, No. 1, (2008) 17–28.

6. Priss, U.: Establishing connections between Formal Concept Analysis and Rela-
tional Databases. Dau; Mugnier; Stumme (eds.), Common Semantics for Sharing
Knowledge: Contributions to ICCS, (2005) 132–145

7. Silberschatz, A., Korth, H. F.,Sudarshan, S.: Database System Concepts, McGraw-
Hill, Fifth Edition, (2005)

8. Yao, H., Hamilton, H. J.: Mining functional dependencies from data, Data Mining
and Knowledge Discovery, Vol. 16, Nr. 2, Springer Netherlands, (2008) 197–219

9. Serhiy A. Yevtushenko: System of data analysis ”Concept Explorer”. (In Russian).
Proceedings of the 7th national conference on Artificial Intelligence KII-2000, Rus-
sia, (2000), 127–134.

8 Viorica Varga and Katalin Tünde Jánosi Rancz

