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Abstract. Lattice matrix auto-associative memories also known as auto-
associative morphological memories are artificial neural networks used to
store and recall a finite set of binary or real valued patterns. They differ
from other auto-associative memory models in the way exemplar patterns
are encoded in the network as well as in the computation performed to
recall a pattern. Both storage and recall mechanisms are based on min-
imax algebra operations that result in unique memory properties, such
as, single step recall, perfect retrieval of all exemplar patterns, and infi-
nite storage capacity. Two dual lattice matrix auto-associative memories
have been developed so far. The min-memory is robust to erosive noise
and the max-memory is robust to dilative noise; however, neither of these
memories is able to recall patterns degraded by mixed or random noise.
This paper introduces a redundant encoding of patterns based on the
geometrical characterization of the set of fixed points common to both
memories. Redundancy changes the size and shape of attraction basins
of exemplar patterns and expands the set of fixed points, hence recall
capability of patterns corrupted with random noise is possible using a
simple scheme based on this type of memory networks.

Key words: Fixed point sets, Lattice associative memories, Minimax
algebra, Morphological associative memories, Noisy patterns, Pattern re-
call, Redundant encoding

1 Introduction

Lattice matrix auto-associative memories approach the problem of pattern asso-
ciation from a minimax point of view. The Hebbian law of correlation encoding
is still used to store a set of patterns but modified accordingly to be consis-
tent with the mathematical framework of minimax algebra. Pattern retrieval
is performed with minimax matrix products in a similar way as usual matrix
multiplication of linear algebra is used in linear correlation associative memory
models. Brief but complete summaries of the different developments in the field
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of morphological associative memories can be consulted in [6, 10, 17, 18, 23]. More
recently, the canonical lattice auto-associative memories (LAMs), also known as
auto-associative morphological memories(AMMs), have been treated within the
more general framework of lattice transforms. In this framework, the min-WXX

and max-MXX auto-associative memories are examples of lattice transforms be-
tween n-dimensional real vectors. The set of fixed points of a lattice transform
is a key concept since it provides a complete description of the transform behav-
ior. Fixed points of AMMs where first presented in [15] and discussed further in
[10, 18]; one of the main results is that WXX and MXX, have the same set of
fixed points denoted by F (X). Recently, an algebraic as well as a geometrical
characterization of the set of fixed points F (X) has been established in [10, 12].
This work proposes to exploit the infinite storage capacity and to take advantage
of the geometrical nature of F (X), to enable recall capability of lattice matrix
auto-associative memories for input patterns degraded by random noise.

Our work in the present paper is organized as follows: Section 2 provides the
necessary matrix operations borrowed from minimax algebra for dealing with
lattice matrix associative memories. Also, an abstract overview of the main the-
oretical results obtained from previous research on lattice auto-associative mem-
ories is given very briefly. Section 3 describes the redundant encoding technique
and simple examples with small sized matrix associative memories are given to
make explicit its potential. Section 4 presents some computational experiments
with a set of high-dimensional patterns, consisting of gray-scale images, that
demonstrate the recall capability of canonical LAMs or AMMs when presented
with noisy inputs. Finally, conclusions of this research are given in Section 5.

2 Mathematical Background

Mathematical definitions and key results about lattice matrix associative mem-
ories are given here to support the geometrical encoding technique described in
the next section. For further material on the mathematical basis the reader is
invited to read previous works on the subject [4, 10, 18]. Computation in morpho-
logical neural networks is performed within a mathematical framework that is
based on lattice algebra systems [1, 13]. More specifically, the extended real min-
imax algebra [2, 5], denoted by (IR±∞,∧,∨,+,+′), is used for lattice associative
memories where IR±∞ = IR ∪ {−∞,+∞}, the binary operations ∧,∨ denote,
respectively, the min and max arithmetical operations between two numbers,
and +,+′ correspond respectively, to addition and dual addition of arbitrary
elements in IR±∞. For finite values x, y ∈ IR, we have that x+y = x+′ y. Matrix
computations in minimax algebra are defined elementwise in a similar way as
matrix computations are defined in linear algebra. Two fundamental minimax
matrix operations are matrix conjugation and matrix max-multiplication; given
a matrix A of size m × p and a matrix B of size p × n over R±∞, for each
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i = 1, . . . ,m and j = 1, . . . , n, they are defined as (t denotes transposition)

a∗ij = −aji or A∗ = −At (1)

cij =
p∨

k=1

(aik + bkj) or C = A∨B. (2)

Dually, the min-product of matrices A and B, denoted by A∧B, is defined
in terms of the generalized ∧-min operation. There are two canonical lattice
matrix associative memories known as the min-memory, denoted by WXY, and
the max-memory, denoted by MXY. Following a minimax correlated weight rule,
each memory stores a set of k associations (xξ,yξ), represented by (X, Y ), where
X = (x1, . . . ,xk) ⊂ IRn and Y = (y1, . . . ,yk) ⊂ IRm. Left equations in (3) and
(4) are given in entry format for i = 1, . . . ,m and j = 1, . . . , n; right equations
are in matrix notation.

wij = (WXY)ij =
k∧

ξ=1

(yξ
i − xξ

j) ; WXY = Y ∨X∗ (3)

mij = (MXY)ij =
k∨

ξ=1

(yξ
i − xξ

j) ; MXY = Y ∧X∗ (4)

If Y 6= X then a memory is called hetero-associative, otherwise it is called
auto-associative; this last case is where our attention is focused in this paper.
We repeat two fundamental results on lattice auto-associative memories proved
in [4]. First, WXX and MXX give perfect recall for perfect input in the sense
that, WXX ∨ xξ = xξ (resp. MXX ∧ xξ = xξ) for ξ = 1, . . . , k. Second, since
the value of k is not restricted in anyway, WXX and MXX have infinite storage
capacity.

Missing parts, occlusions or corruption of exemplar patterns can be consid-
ered as “noise” and we speak of random noise, when alterations in pattern entries
follow a probability density function. Recall capabilities of LAMs for non-perfect
inputs, requires noise to be classified in three basic types. Let I = {1, . . . , n}
then, a distorted version x̃ of pattern x has undergone an erosive change when-
ever x̃ ≤ x or equivalently if ∀i ∈ I, x̃i ≤ xi. A dilative change occurs whenever
x̃ ≥ x or equivalently if ∀i ∈ I, x̃i ≥ xi. Let L,G ⊂ I be two non-empty disjoint
sets of indexes. If ∀i ∈ L, x̃i < xi and ∀i ∈ G, x̃i > xi, then the distorted pattern
x̃ is said to contain mixed noise (random or structured). In practical situations,
the “perfect recall” requirement is relaxed, and we say that WXX (resp. MXX)
is an almost perfect recall memory for a set X of patterns if and only if there
exists a small rational number ε > 0 close to zero, such that µ(WXX ∨ x̃,x) ≤ ε
(resp. µ(MXX ∧ x̃,x) ≤ ε) for all x ∈ X with respect to finite sets of noisy
versions x̃ of x, where µ(·) is an adequate measure tailored to treat with binary
or real valued patterns.
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The lattice matrix auto-associative memories WXX and MXX can be viewed
as lattice transforms of the real vector space IRn into itself [5, 10, 24]. Thus, for
example, the min-memory is considered as a map WX : IRn → IRn for which
WX(x) = WXX ∨x for each x ∈ IRn. Sometimes, to simplify notation we write
W for the min-memory lattice transform instead of WX, if reference to the set X
is understood in the context of discourse. The natural factorization of the map
W , shown below in commutative diagram format, provides in a compact way
the action that W performs on input vectors.

IRn

π

��

W // IRn

IRn/RW
η // ImW(IRn)

ι

OO (5)

In diagram (5), π : IRn → IRn/RW is the projection map (surjective) from
the lattice transform domain IRn to the quotient set IRn/RW obtained from the
induced equivalence relation RW between pairs of n-dimensional vectors, i.e.,
vector x is related to vector y if and only if W (x) = W (y). Let W (x) = x,
then W (y) = x means that y is attracted to the fixed point x; otherwise, let
W (x) = x′ 6= x, then W (y) = x′ and since x′ = W (x′) (one-step output re-
call), y is attracted to another fixed point x′. The new fixed point x′ is simply
a minimax combination of the exemplar patterns xξ ∈ X, a fact established in
[10, 18]. The natural map (bijective), η : IRn/RW → ImW(IRn) establishes a one
to one and onto correspondence between each equivalence class ΩW(x) and the
single image value W (x′) computed by W on each x′ ∈ ΩW(x). The equivalence
class ΩW(x) corresponds to the orbit or attraction basin of a given input pattern
x; note that the input pattern may be an exemplar pattern xξ ∈ X and that
x′ may be a corrupted version x̃ξ of xξ. The fact that ImW(IRn) equals the set
of fixed points of the W transform was proved in [10], it is denoted by F (X)
or alternatively by F (W ) = F (WX). It turns out that F (X) coincide for both
auto-associative memories, i.e., F (X) = F (W ) = F (M), and consists of the same
elements that belong to the linear minimax span of X. Under the natural map
η, the inverse image of any fixed point x gives its orbit, i.e., η−1(x) = ΩW(x).
Finally, ι : F (X) → IRn is just an immersion map (injective) that assigns each
fixed point to itself within the original range of the W map.

To illustrate the previous ideas, we describe a simple example in detail for a
two-dimensional memory that stores just one pattern, i.e., let X = {x1} where
x1 = (x1

1, x
1
2) ∈ IR2; then, the min-memory matrix WXX is given by

WXX =
(

w11 w12

w21 w22

)
=

(
0 w12

w21 0

)
. (6)

Without loss of generality we take x1
1 > x1

2, thus w12 = x1
1 − x1

2 > 0, w21 =
x1

2 − x1
1 < 0, and w21 = −w12. There is no need to verify that WXX ∨x1 = x1,

since this is a specific instance of the perfect recall property that lattice auto-
associative memories have on X [4]. Another useful result is that each column
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vector of the matrix WXX is also a fixed point (a proof based on graph theoretical
concepts appears in [18], for an alternative shorter argument see the Appendix).
The recall stage for an input vector is explained next. Let x = (x1, x2) be an
input vector different to the stored exemplar pattern x1, i.e., x 6= x1 as shown
in Fig. 1.
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Fig. 1. The solid line L(x1) of slope 1 equals F (X), the set of fixed points of the
min-WX transform for X = {x1}. In the diagram, x1, x ∈ F (X) but x 6= x1; the left
and bottom half rays form a single orbit under W , the upper and right half rays form
a single orbit under M , and the arrows show the sense of attraction towards L(x1)

The entries of the output vector y recalled with the min-memory are com-
puted as

y1 = (w11 + x1) ∨ (w12 + x2) = x1 ∨ (x1
1 − x1

2 + x2), (7)
y2 = (w21 + x1) ∨ (w22 + x2) = x2 ∨ (x1

2 − x1
1 + x1). (8)

Consider the first coordinate y1 of the recalled pattern (abscissa of the new
point) and let x2 = x1

2 (same vertical position), then

y1 = x1
1 ⇔ x1 < x1

1 (9)
or y1 = x1 ⇔ x1 > x1

1, (10)

similarly, for the second coordinate y2 of the recalled pattern (ordinate of the
new point), let x1 = x1

1 (same horizontal position), hence

y2 = x1
2 ⇔ x2 < x1

2 (11)
or y2 = x2 ⇔ x2 > x1

2. (12)
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From (9) and (11), the orbit of the fundamental memory x1, denoted by
ΩW(x1), consists of all those points of IR2 that lie in the horizontal half-ray
determined by x1 ≤ x1

1 (eroded 1st coordinate) and x2 = x1
2, together with the

vertical half-ray determined by x1 = x1
1 and x2 ≤ x1

2 (eroded 2nd coordinate).
Note that, less than or equal signs are used since x1 is included in the orbit,
therefore

ΩW(x1) = {x ∈ IR2|x1 ≤ x1
1, x2 = x1

2} ∪ {x ∈ IR2|x1 = x1
1, x2 ≤ x1

2}. (13)

On the other hand, from (10) and (12), if the abscissa of the input pattern
x ∈ IR2 is strictly to the right of x1

1 with x2 = x1
2, or its ordinate is strictly

above x1
2 with x1 = x1

1, then the recalled pattern is a fixed point different to the
stored exemplar. Hence, x 6= x1 is such that WXX ∨x = x, or equivalently,

x1 = x1 ∨ (w12 + x2) and x2 = x2 ∨ (w21 + x1), (14)

which are satisfied, respectively, if x2 = w21 + x1 and x1 = w12 + x2.
However, each one of the last two expressions implies the other by the fact,
stated earlier, that w21 = −w12. Therefore, the coordinates of any new fixed
point x 6= x1 are related by a single linear equation given by

x2 = x1 + w21, (15)

which is a line of positive slope equal to 1 and intercept at the origin equal to
w21. The line passing through the points (0, w21), (x1

1, x
1
2) = x1, and (x1, x2) = x,

is denoted by L(x1), to remind its relation to the exemplar pattern x1 ∈ X.
Hence, the min-memory matrix transformation WX has an infinite number of
fixed points x 6= x1, such that x ∈ L(x1), and the whole plane IR2 is partitioned
through their orbits, i.e.,

IR2 =
⋃
{ΩW(x) | x ∈ L(x1)}. (16)

A similar analysis can be carried out for the max-memory transform MX

with X = {x1}. Although, the fixed points of M lie on the same line L(x1), the
orbit of the fundamental memory x1, ΩM(x1) 6= ΩW(x1), since it is composed
of points that lie in the horizontal half-ray determined by x1 ≥ x1

1 (dilated
1st coordinate) and x2 = x1

2, together with the vertical half-ray determined by
x1 = x1

1 and x2 ≥ x1
2 (dilated 2nd coordinate), hence

ΩM(x1) = {x ∈ IR2|x1 ≥ x1
1, x2 = x1

2} ∪ {x ∈ IR2|x1 = x1
1, x2 ≥ x1

2}. (17)

Also, ΩW(x) ∩ ΩM(x) = {x} for any x ∈ L, and the dual partition of the
plane IR2 is given by

⋃
{ΩM(x) | x ∈ L(x1)}. We remark that, the line given in

(15) can be obtained directly from the WXX matrix. Here, W1
XX = (0, w21)t is

the intercept point on the x2 axis and W2
XX = (w12, 0)t is the intercept point on

the x1 axis. These two points, depicted as hollow dots on Fig. 1, define L. For this
example, given a distorted version of x1, denoted by x̃1, the min-memory WXX

(resp. max-memory MXX) is capable of perfect recall, i.e., WXX ∨ x̃1 = x1 (resp.
MXX ∧ x̃1 = x1), if and only if x̃1 ∈ ΩW(x1) (resp. x̃1 ∈ ΩM(x1)), meaning that
x̃1 must be eroded (resp. dilated) in one of its two coordinates but not both.
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3 Redundant Encoding

Besides the algebraic characterization given for F (X) in the previous section, a
geometrical characterization of the set of fixed points has been recently devel-
oped in [10, 12]. The shape of F (X) corresponds to an m-dimensional convex
prismatic beam with 1 ≤ m ≤ n, and the value of m depends on the nature of
the underlying finite set X of exemplar pattern vectors. Schematic visualization
of the set F (X) is possible only for n = 1, 2, 3; for higher dimensions, used is
made of concepts from n-dimensional geometry of which the necessary material
together with a detailed treatment of the shape of F (X) appears in [10, 12].
Simple numerical examples in lower dimensions (small sized memories) make
evident the inherent limitations of any lattice matrix auto-associative memory,
in the sense that, neither WXX nor MXX is able to recall correctly any exem-
plar pattern that has been corrupted with random noise. Also, the surprising
robustness of the min-memory WXX with respect to erosive noise as well as
the max-memory MXX against dilative noise is related to typical applications
whose patterns are points in higher dimensional spaces, i.e., for ξ = 1, . . . , k,
xξ ∈ IRn with n � 1. Complementary theoretical developments coupled with
computational techniques such as the kernel methods [3, 4, 6, 14, 16, 21], fuzzy
MAM models [19, 20, 25], enhanced memory schemes [22, 26], and dendrite based
models [7–11], offer alternative solutions to robust pattern recall from noisy
inputs. Recently, the technique of noise masking has been introduced to take
advantage of the strong properties that single lattice matrix auto-associative
memories have [23]. All the previous techniques share in common an increase in
computational complexity or in the definition of the network topology; however,
none of them exploits the infinite storage capacity property that WXX and MXX

have. Therefore, we propose to use the aforementioned property together with
the geometrical characterization of the fixed point set of LAMs, to introduce a
simple procedure based on redundant encoding, to enable the recall of pattern
approximations to exemplars from distorted inputs.

Given a set X = {x1,x2, . . . ,xk} of k exemplar patterns xξ, with finite real
entries, redundant encoding consists in the storage of additional, carefully design
patterns to set X. The new patterns must be spatially related to the original ones
and for each xξ ∈ X, with ξ = 1, . . . , k, the same number p of related patterns,
denoted by {xξ1 ,xξ2 , . . . ,xξp}, can be stored in the new min- and max-memories
defined on the augmented set XG given by

XG = X ∪
k⋃

ξ=1

p⋃
q=1

{xξq} (18)

If |X| = k then |XG| = k(p+1) which poses no problem, since W and M have
infinite storage capacity. The purpose to add redundant patterns to the original
exemplar pattern set X is to increase the number of fixed points by changing the
geometrical shape of F (X), and to expand it, in the sense that F (XG) ⊃ F (X).
It is essential for this scheme to work that the new encoded patterns include
erosive and dilative, or mixed approximations of each exemplar pattern. In other
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words, lattice matrix auto-associative memories should remember not only the
exemplars but also some eroded and dilated, or mixed resemblances of them.
This simple mechanism endows them with recall capability in the presence of
arbitrary noisy inputs. In what follows, we consider the minimum redundant
case, in which only a single approximate pattern is considered for each exemplar.
Thus, p = 1 and only 2k patterns, {x1, . . . ,xk,x11, . . . ,xk1}, are stored in the
augmented memories, WXGXG and MXGXG .

To illustrate the basic idea behind the proposed technique, we elaborate
further the example provided in Section 2. Thus, if set X has a single pattern
x such that x1 = x2, then line L(x) passes through the origin, and contains all
the fixed points of the min- and max-transforms WX and MX, i.e., F (X) = L(x)
as shown by the dotted line at 45◦ with respect to the x1 axis in Fig. 2. The
points to the left, right, below, and above, respectively, denoted by, x`,xr,xb,
and xa, represent close approximations to the exemplar pattern x. For ε > 0,
let the coordinates of these points be defined by x` = (x`

1, x
`
2) = (x1 − ε, x2),

xr = (xr
1, x

r
2) = (x1 + ε, x2), xb = (xb

1, x
b
2) = (x1, x2 − ε), and xa = (xa

1 , xa
2) =

(x1, x2 + ε). Also, notice that, x` and xb are eroded, respectively, in its 1st
and 2nd coordinates; similarly, xr and xa are dilated, respectively, in x1 and
x2. Although we can adjoin all four points to X to build the augmented set
XG, the addition of only two points not on the same line, such as {x`,xr},
{xa,xb}, {x`,xb}, or {xa,xr}, give the same set of fixed points for XG. Let
XG = {x,xa,xr}, then the lattice auto-associative memories of XG, computed
from (3) and (4), are given by

WXGXG =
(

0 −ε
−ε 0

)
and MXGXG =

(
0 ε
ε 0

)
. (19)

Alternatively, the max-memory matrix can be computed using the fact that
M = W∗ together with (1). Next, to determine F (XG), we solve the equation
WXGXG ∨x′ = x′ for x′ not in XG, equivalently, x′i =

∨2
j=1(wij+x′j) for i = 1, 2.

The resulting expressions are given by x′1 = x′1 ∨ (x′2− ε) and x′2 = x′2 ∨ (x′1− ε),
from which x′2 − ε ≤ x′1 and x′1 − ε ≤ x′2, consequently, x′1 − ε ≤ x′2 ≤ x′1 + ε.
The boundary values for x′2 in this last compound inequality provide us with
the line equations of slope 1, x′2 = x′1 + ε and x′2 = x′1 − ε, labeled in Fig. 2
as La = L(xa) and Lr = L(xr), respectively. Since x′2 ∈ [x′1 − ε, x′1 + ε], the
fixed point set of XG consists of all points that belong to La and Lr, or lie
in the infinite band between them. Mathematically, if H̄−

a denotes the closed
half plane on and below the line La and H̄+

r denotes the closed half plane on
and above the line Lr, then, F (XG) = H̄−

a ∩ H̄+
r . Notice that, by definition,

H̄+
a ∩ H̄−

a = La and H̄+
r ∩ H̄−

r = Lr, hence the boundary of the fixed point
set of XG is given by ∂F (XG) = La ∪ Lr. The geometric shape of F (X) for
n-dimensional patterns is fully developed in [12]. In this example, by encoding
two redundant patterns that are spatially related to the single exemplar in X,
an expanded fixed point set is obtained such that F (X) ⊂ F (XG). For pattern
recall in the presence of noise, we may consider all fixed points x′ ∈ F (XG)
that satisfy the inequality, |x′1 − x1|+ |x′2 − x2| ≤ ε (hatched rhombus shown in
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Fig. 2), to be “good” approximations to a given exemplar pattern x, in the sense
described earlier for almost perfect recall using a single lattice auto-associative
memory. The parameter ε gives us the possibility to increase or decrease the
size of the rhombus shaped neighborhood and therefore to relax or constrain the
admissible memory outputs.
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Fig. 2. The solid line L(x) of slope 1 equals F (X), the set of fixed points of the min-
WX transform for X = {x}. The points, x`, xr, xa, xb ∈ F (XG) are eroded or dilated
versions of x in a single coordinate. The left and bottom half rays are different orbits
under WXG , the upper and right half rays are distinct orbits under MXG , and the
arrows show the sense of attraction, respectively, towards La or Lr

It is reasonable to expect that for high dimensional patterns, redundant en-
coding can be achieved in various ways. The extension of the base examples,
described previously, to higher dimensions (n > 3) is impossible to visualize.
However, the basic procedure is still the same, since a subset of the coordinates
of a given exemplar pattern in X can be eroded to a minimum prescribed value
and another subset of coordinates, disjoint from the first, may be dilated to a
maximum prescribed value. The rest of the coordinate values would remain the
same as those in the original exemplar. In this manner, a single redundant pat-
tern related spatially to each exemplar in X is encoded to build XG. Adjoined
patterns are then approximations to exemplars which also can be regarded as
“noisy” versions of them, in the sense that, mixed structured noise is induced
by eroding and dilating several coordinates. Clearly, the adequate selection of
the coordinate subsets to be modified is determined by pattern dimensionality
as well as their nature in a given application.
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4 Application Example

To test our proposal, we conducted a computer experiment using 10 gray scale
images of size 53×53 pixels as integer valued patterns of dimension 2809. Fig. 3
displays only four of these exemplar pattern images together with a single re-
dundant encoded pattern obtained by assigning a minimum value (0 for extreme
erosion) or a maximum value (255 for extreme dilation) to the gray values of a
subset of the pixel coordinates, the same for each exemplar in X. Hence, using
(3) and (4), the memory matrices WXGXG and MXGXG , of size 2809 × 2809,
store all associations between the 20 patterns in the augmented set XG.

Fig. 3. 1st row: exemplar patterns x1, x3, x6, x8 ∈ X; 2nd row: redundant encoded
patterns x11, x31, x61, x81 adjoined to X to form XG; 3rd row: noisy versions of ex-
emplars, respectively, with noise probabilities of 0.3, 0.4, 0.5, and 0.6; 4th row: recalled
pattern approximations.

Each pattern in X was contaminated 100 times by adding random noise with
probabilities 0.1 to 0.9 and 128 as offset value. The measure µ(·) used for almost
perfect recall is the normalized mean square error (NMSE) defined by σ(x, x̃) =∑n

i=1(xi − x̃i)2/
∑n

i=1 x2
i . Fig. 4 shows the performance curves obtained in the

recall stage using as final output, the arithmetical mean of the min and max
memory outputs, since WXGXG attracts points towards F (XG) by increasing
coordinate values and MXGXG attracts points towards F (XG) by decreasing
coordinate values. Also, if more and more pattern entries are affected by noise,
these modified entries are less likely to be equal in the remaining patterns, thus
it is no surprise that NMSE decreases as the probability of error increases. In
spite of this abnormal behavior, adjoining redundant encoded patterns to the
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original pattern set is a useful alternative that works best for highly corrupted
inputs.
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Fig. 4. Recall stage performance curves obtained over 100 trials of producing noise
versions of four selected exemplars. NMSE is computed between recalled outputs and
corresponding exemplars. In selected patterns, relative error range remains within the
same order of magnitude (10−2), for all noise levels

5 Conclusions

In this paper, we introduce a novel and interesting technique that encodes re-
dundant patterns in order to endow lattice auto-associative memories with recall
capability in the presence of noise. Basically, the set of fixed points generated
by the min or max transforms on the original exemplar set is expanded to allow
for the existence of local neighborhoods that might be considered as clusters
of approximate versions to exemplars. A complete and simple description using
two dimensional patterns has been provided to illustrate the encoding mecha-
nism. Finally, a scenario for gray scale image storage and recall demonstrates the
scope and usefulness of minimal redundant pattern encoding in LAMs. Future
work will consider different geometrical configurations for pattern encoding, fur-
ther study on fixed point neighborhood shapes, and more important, carefully
designed tests – with or without additional encoding – to compare our proposed
model against other associative memory models.
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Appendix

Theorem 1. Let X = (x1, . . . ,xk) ⊂ IRn be a set of k exemplar patterns and
let (w1, . . . ,wλ, . . . ,wn) denote the column vectors of the corresponding min-
memory WXX of size n× n, then WXX ∨wλ = wλ for λ = 1, . . . , n. Therefore,
any column of the matrix WXX is a fixed point for the min-memory transform.

Proof. By definition, the entries of the column vector wλ of WXX for j = 1, . . . , n
are given by wλ

j =
∧k

ξ=1(x
ξ
j−xξ

λ), and the entries of the recalled output pattern y

are computed as follows, yi = (WXX ∨wλ)i =
∨n

j=1(wij+wλ
j ) = wλ

i ∨
∨

j 6=i(wij+
wλ

j ), for i = 1, . . . , n. Since, for all i, wij + wjλ ≤ wiλ = wλ
i , by Lemma 5.1 in

[10], then
∨

j 6=i(wij + wλ
j ) ≤ wλ

i ⇒ yi = wλ
i .

A similar result holds for the max-memory MXX, i.e., any column of the MXX

matrix is a fixed point for the max-memory transform. Since WXX ∨WXX =
WXX and MXX ∧MXX = MXX, the previous result is equivalent to the fact that
WXX and MXX are idempotent, respectively, under the max and min products.
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