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Abstract. The calculation of an optimal subset of inputs from a set
of candidate ones is known in the bibliography of system modeling as
the input (or feature) selection problem. In this work we introduce a
remarkable attribute of the FLR classifier: it’s capacity to identify re-
dundant system inputs, from a set of input/output data. The proposed
approach is applicable beyond RN on any lattice ordered data set LN ,
which may include disparate types of data. Also, the proposed approach
can deal with populations of data instead of crisp data vectors. Finally,
it is highlighted that proposed approach can be employed for designing
models with simple structure and significant performance. The method
is successfully applied here on two well known real world classification
problems, identifying redundant inputs and inducing FLR classifiers with
simple structure and favorable classification performance.
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1 Introduction

One of the most important issues in computational intelligence is the structure
identification of the model to be used for modeling effectively a physical system.
According to established modeling methodology, physical systems are treated
as black boxes where the only knowledge we have about them emanates from a
finite set of samples, which are organized as ordered pairs of input (excitations)
output (response) data. The next step in modeling, given a sufficient set of
input/output data, is the definition of proper model’s structure and a learning
rule. Since samples are always finite, an effective modeling must produce models
with sound generalization capacities. That is, models which have as close as
possible behavior to physical system, especially on data lying outside the initial
set of samples.

The related bibliography on effective model’s definition including fuzzy mod-
eling [1–5], neural networks [6–8] , self organizing maps [9], mathematical models
[10–12], etc is vast. In general, structure’s identification problem can be hierar-
chically divided into three principal sub-problems. The first one, namely input
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selection problem, is the choice from a set of (intuitively selected) candidate
inputs of those ones that are necessary and sufficient to describe the specified
target. Second, is the formation of inner model structure (i.e. number of rules, or
neurons, input space partition etc.) in the space of selected inputs. Third, is the
process of parameter identification (training) by applying a convenient learning
rule.

The importance of input selection problem has been widely recognized by
many researchers [13, 14, 4] . For instance, in [3, 4] the authors claim that using
a scale of importance varying from one to one hundred, the input selection
problem is rated as one hundred, the inner model’s structure is rated as ten,
while the task of parameters identification is rated as one.

A detailed review of several input selection approaches is referred to in [13,
15]. Although the proposed method encounter all aforementioned three types of
structure identification problems, the discussion in this work focuses mainly on
input selection issues.

The basic advantage of our methodology, presented below, is that it can be
applied on non-homogeneous input/output data including real numbers, popula-
tions of data represented by probability/possibility distributions,etc. Disparate
types of data can be represented by Fuzzy Interval Numbers (FINs) [16–18]. The
set of FINs is lattice ordered, where a metric can be defined by establishing a
parametric positive valuation function [16]. Parametric positive valuation func-
tions introduce several tunable non-linearities, which are adjusted by a stochastic
non linear optimization method toward maximization of performance.

The layout of this preliminary work is as follows: Section 2 presents the
mathematical background. Section 3 presents the proposed method. Section 4
presents experimental results. Finally, section 5 concludes by summarizing the
contribution of this work.

2 Mathematical Background

In order to make the proposed approach clear, some notions are shown next. A
generalized interval is denoted by [x, y], x, y ∈ R. Let (∆,≤) = (R,≤∂)×(R,≤)
be the complete product lattice of generalized intervals. Note that the inverse ≥
of any order relation ≤ is itself an order relation. The order ≥ is called the dual
of ≤, symbolically ≤∂ , or ≤−1, or ≥.

The corresponding meet and join in lattice (∆,≤) are given by [a, b]∧[c, d] =
[a∨c, b∧d] and [a, b]∨ [c, d] = [a∧c, b∨d]. Note that (∆,≤) = (∆−,≤)∪(∆+,≤)
where (∆−,≤) , (∆+,≤) is the set of negative (a > b) and positive (a ≤ b)
generalized intervals, respectively. Note that lattice (∆+,≤) is isomorphic to
lattice (τ(R),≤) of intervals in set R, That is (τ(R),≤) ∼= (∆+,≤).

A strictly decreasing function θR : R → R implies an isomorphism (R,≤
) ∼= (R,≥). Furthermore, a strictly increasing function νR : R → R is a positive
valuation function in lattice (R,≤). Hence, function ν∆ : ∆ → R, given by
ν∆([a, b]) = νR(θR(a)) + νR(b) is a positive valuation function in lattice (∆,≤)
[19]. It follows a metric d∆ : ∆×∆ → R+

0 given by
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d∆([a, b], [c, d]) = [νR(θR(a ∧ c))− νR(θR(a ∨ c))] + [νR(b ∨ d)− νR(b ∧ d)] (1)

A Generalized Interval Number is a function f(0, 1] → ∆ where ∆ denotes
a complete product lattice (∆,≤) = (R,≤∂)× (R,≤) of generalized intervals.

2.1 Fuzzy Interval Numbers

Fuzzy Interval Numbers or FINs have been extensively described in [16], [17],
[18]. Let L to be the Lattice of FINs. Then a N-tuple FIN F ∈ LN . A FIN F
can be represented as the union set of generalized intervals F = ∪

h∈(0,1]
{[ah, bh]}.

IF ah = bh∀h ∈ (0, 1] the FIN is called trivial FIN. Given a strictly increasing
function: ν(.) and a strictly decreasing one: θ(.) an inclusion measure is defined
as a function σL : L× L → [0, 1], given by:

σL(F,E) =

1∫
0

N∑
i=1

[νR,i(θR,i(ci,h)) + νR,i(di,h)]

N∑
i=1

[νR,i(θR,i(ai,h ∧ ci,h)) + νR,i(bi,h ∨ di,h)]
dh (2)

Note that F,E are N-tuple FINs. Functions ν : R → R+
0 and θ : R → R can

be given by:

νR,i(x) = Ai

1+e−λi(x−mi)

θR,i(x) = 1− 2mi

(3)

where i = 1, 2, ..., N . N denotes the number of inputs. Ai, λi,mi ∈ R tunable
parameters. The size of a FIN is defined as a function ZF : F× F → R+

0 , given
by:

ZF (F) =

1∫
0

d∆(ah, bh)dh (4)

where d∆(ah, bh) is computed by Eq. (1)

3 The Proposed Method

The granular FLR is a set of labeled pairs (Ei, ci) or granules , each represented
by a N -tuple FIN Ei and a label ci. Linguistically, a granule defines a rule of the
form: IF datum Fj is included in granule Ei then the class of datum Fj is ci.
Hence a set RB = {Ei, ci} of granules defines a rule base for the FLR classifier.

The FLR algorithm is divided in two parts:
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Algorithm 1 FLR for training
1: Initialize RB = {E`, c`} | ` = 1, 2, ..., L of granules E`. c` ∈ C is the label of granule

E`.
2: Do set all pairs in RB. Present the next input pair (Fi, ci), i=1,...,n. Compute the

degree of inclusion σF (Fi ≤ E`) of input granule Fi to all granules E`, ` = 1, ..., L.
3: IF no pairs are set in RB then store input pair (Fi, ci) in RB, L = L + 1, goto 2.
4: The winner among set pairs in RB is Ej , cj such that j = arg max

`∈{1,...L}
{σF (Fi ≤ E`)}.

5: The Assimilation Condition: Both 1.) The size Z(Fi ∨ Ej) of granule Fi ∨ Ej is
less than a user defined threshold size Zcrit and 2.) ci = cj .

6: if the Assimilation Condition is not satisfied then reset the winner and goto 3.
Else, replace the winner with granule Fi ∧Ej ; and goto 2.

Algorithm 2 Stochastic optimization of tunable FLR parameters
1: Select a population of individuals and encode Zcrit, Ai, λi, mi where i = 1, 2, ..., N

into chromosome.
2: For each individual apply algorithm 1 and calculate its Fitness given by Eq. (5),

(see Section 4).
3: Apply genetic operators to produce next generation.
4: if stopping criterion is not satisfied then goto 2.
5: Store the trained FLR, consisting of a RB of labeled granules and fine tuned pa-

rameters Zcrit, Ai, λi, mi.

The results of algorithm 1 depend on both Zcrit and parameters Ai, λi,mi |i =
1, ..., N according to Eq. (2), (3). The tunable parameters Zcrit and parameters
Ai, λi,mi are optimized such that the rate of success classification is maximized.

In the case where νR,i(x) = consti ∀ x, i | consti ∈ R, it follows by equations
1, 2 that any calculated distances and similarity measures take constant values
for every data Fj ,Fk 6=j . Hence, there is no any discretization information and
all data are equally distant (or equally similar) to each other. The classification
process has to be entirely based only on the attributes (if any) with respective
non flat sigmoid positive valuation functions. In other words attributes which
have constant sigmoid positive valuation functions in the range of their interest,
provides no discretization information and may be omitted. The aforementioned
reasoning is experimentaly verified next.

4 Experimental Results

It has to be stressed that here we use input/output data, which are real numbers.
However, the method has been developed using FINs data representation, which
are members of a lattice. Hence, without loss of generality, a FIN represents here
a real number.
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4.1 Fisher’s IRIS Classification Benchmark

Fisher Iris benchmark data set, downloaded from the UCI machine learning
repository [20], is used to demonstrate the proposed feature selection tech-
nique. It includes measurements regarding four crinum flower attributes includ-
ing x1:sepal-length, x2:sepal-width, x3:petal-length, x4:petal-width. The crinums
are classified in three classes, namely versicolor (i.e. class 1), setosa (i.e. class
2), and virginica (i.e. class 3). In all, there are fifty 4-dimensional vectors per
class available. After a random data permutation we employed the first 50 data
vectors (33.33%) for training the next 50 (33.33%) for validation and the last
50 (33.33%) for testing. Each input datum is considered as a 4-tuple trivial
FIN. Each sigmoid νi(x) | i = 1, 2, 3, 4, is defined by three tunable parameters
Ai, λi,mi.

The genetic algorithm, presented in [21], is used for the optimization of FLR.
The optimization of FLR lies in the calculation of sigmoid’s parameter such that
the rate of successful classification on both training and validation data set is as
high as possible. Sigmoid parameters are binary encoded into the chromosome
of every individual, using a word of 16 bits per parameter. Each individual rep-
resents a FLR model which is created using the encoded parameters’ value, and
applying the algorithm 2 on the training data set. Hence, the percent classifi-
cation rate on both training and validation data set, namely (Rtrn) and (Rval)
respectively, is calculated. The fitness function is calculated by Eq. (5)

Q(ps) = w ·Rtrn + (1− w) ·Rval +
0.1
L

(5)

The parameter ps = [Zcrit, A1, λ1,m1, ..., AN , λN ,mN ] denotes the vector of
tunable parameter values, which are encoded into the chromoshome of individual
s, s = 1, 2, ...S | S denotes the population size. For N attributes the vector ps has
3N + 1 elements. Parameter L is a positive integer, which depends on the value
of parameter Zcrit and denotes the number of granules in RB that constitute the
FLR model. Term 0.1/L in Eq. (5) is used to lead the evolution into FLR models
with RB having small number of granules. Finally, w = 0.5 is a relaxation factor,
used to direct the evolution out of over trained solutions. The GA population
includes 25 individuals and the evolution terminates when the quality function
of the elite individual remains intact for 50 successive generations.

The sigmoid functions of the trained FLR are illustrated in Fig. 1. Stated by
experimental results, we conclude that attribute sepal width is negligible, since
all sepal width input values are mapped to a constant value approximately equal
to 2. As a result attribute sepal width does not provides any class discretization
information and should be removed. Our claim was experimentally verified by re-
calculating the classification rate without using sepal width values. We remarked
that ignorance of sepal width does not affect training, validation and checking
classification rate.
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Fig. 1. The sigmoid positive valuation functions of the four attributes for the Fisher’s
IRIS classification benchmark.Since the sigmoid function for Sepal width is flat we
conclude that the corresponding input is redundant.

4.2 The Wine Classification Benchmark

A more complex problem, the well known wine classification benchmark, is used
in this example for further verification of proposed approach. In this problem
is faced the classification of wines, in three categories according to 13 measured
chemical attributes. Each input datum is created as a 13-tuple trivial FIN. Each
datum’s output takes an integer value 1,2, or 3 which represents the class of
specific wine sample. The total of 178 input - output data were separated in three
subsets, namely, training (60 data), validation (60 data) and testing (58 data) set.
Algorithm FLR was applied using all 13 attributes. After training, the sigmoid
functions of attributes are illustrated in Fig. 2. It is clearly observed that six
attributes: Alcohol, Alkalinity of Ash, Magnesium, Total phenols, Nonflavonoid
phenols and Proanthocyanins illustrate flat sigmoid in the range of interest.
Thus, they are redundant. Ignoring redundant attributes a simplified FLR model
classifier was built, which provides the same classification rate with FLR created
by all thirteen attributes. This result confirms experimentally the statement that
specific attributes are unnecessary.

5 Discussion and Conclusion

A novel and effective method for the determination of redundant attributes in
classification problems was introduced. Our proposed method for input selection
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Fig. 2. The wine Classification Benchmark. Attributes with flat sigmoid positive valua-
tion functions are redundunt ones since all their input values are mapped to a constant
number.
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using the FLR classifier computes only sufficient conditions. Hence when the
sigmoid (positive valuation function) is constant in the range of interest of an
input variable then we conclude that the latter input variable is redundant and
can be omitted. In other words, for not-constant positive valuation functions
we cannot tell whether the corresponding input variable is redundant or not.
More work needs to be done in this direction in the future. Considering that we
need only three tunable parameters per classifier’s input, we conclude that the
proposed methodology produces FLR classifiers with simple structure. Moreover,
the proposed technique is applied on data sets which are Lattices. In a future
work our proposed method will be applied on disparate types of data as symbols
and populations of measurements represented by probability distributions.
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