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Abstract. Linear models are ususally preferable due to their simplicity.
However, nonlinear models often emerge in practice. A popular approach
for dealing with nonlinearities is using a piecewise-linear approximation.
In such context, inspired from both Fuzzy Inference Systems (FISs) of
TSK type and Self-Organizing Maps (SOMs), this work introduces en-
hancements based on Interval Numbers and, ultimately, on lattice theory.
Advantages include a capacity to deal with granular inputs, introduction
of tunable nonlinearities, representation of all-order statistics, and induc-
tion of descriptive decision-making knowledge (rules) from the training
data. Preliminary computational experiments here demonstrate a good
capacity for generalization; furthermore, only a few rules are induced.

Key words: Fuzzy inference systems (FIS), Genetic optimization, Gran-
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1 Introduction

The need to employ a real function y : RN → RM , i.e. a model, arises frequently
in practice. In particular, linear models y(x) = c0 + c1x1 + c2x2 + ...+ cNxN are
preferable due to simplicity. However, most often, the dependence of output y
on the input variables x1, ..., xN is nonlinear.

A popular approach for dealing with nonlinearities is using a piecewise-linear
approximation. For instance, in the context of fuzzy logic, the TSK (Tagaki-
Sugeno-Kang) fuzzy model [13], [14], [15], [16] is popular. The computation of a
TSK model, in the first place, involves the computation of clusters.

A popular scheme for clustering is the self-organizing map (SOM) devised
for visualization of nonlinear relations of multidimensional data [10]. Lately,
granular extensions of SOM were proposed in classification applications [8], [11],
where a data cluster was represented by a fuzzy interval number (FIN).

This work proposes simpler acronym IN (Interval Number) for a FIN. In the
sequel, it explains that a IN is a mathematical object, which may be interpreted
as a probability/possibility distribution, an interval, and/or a real number. In
conclusion, inspired from TSK modeling, this work proposes lattice computing
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techniques for an advantageous, piecewise-linear approximation based on a IN-
extension of SOM.

We remark that the term lattice computing, or LC for short, was coined
lately to denote an emerging Computational Intelligence paradigm based on
lattice theory [3]. More accurately, LC is defined here as an evolving collection
of tools and methodologies that can process disparate types of data including
logic values, numbers, sets, symbols, and graphs based on mathematical lattice
theory with emphasis on clustering, classification, regression, pattern analysis,
and knowledge representation applications.

This paper is organized as follows. Section 2 describes the mathematical back-
ground. Section 3 outlines the proposed techniques. Section 4 presents prelimi-
nary experimental results. Section 5 concludes by summarizing the contribution.
The Appendix summarizes the WRLS algorithm for incremental learning.

2 Mathematical Background

Here we summarize useful mathematical notions and tools regarding Interval
Numbers (INs) [4], [6], [7], [8] using an improved mathematical notation [9].

2.1 The Vector Lattice (∆,≤) of Generalized Intervals

Assume the complete latice (R,≤) of real numbers with least and greatest elements
denoted, respectively, by O = −∞ and I = +∞. A generalized interval is defined
in the following.

Definition 1. A generalized interval is an element of lattice (R,≤∂)×(R,≤).

We remark that ≤∂ in Definition 1 denotes the dual (i.e. converse) of order
relation ≤, i.e. ≤∂≡≥. Moreover, product lattice (R,≤∂)×(R,≤) ≡ (R×R,≥ × ≤)
will be denoted by (∆,≤).

A generalized interval is denoted by [x, y], where x, y ∈ R. Apparently, the
corresponding meet and join in lattice (∆,≤) are given, respectively, by [a, b] ∧
[c, d] = [a ∨ c, b ∧ d] and [a, b] ∨ [c, d] = [a ∧ c, b ∨ d], where a ∧ c (a ∨ c) denotes
the minimum (maximum) of real numbers a and c.

The set of positive (negative) generalized intervals [a, b], characterized by
a ≤ b (a > b), is denoted by ∆+ (∆−). Apparently, lattice (∆+,≤) of positive
generalized intervals is isomorphic1 to the lattice (τ(R),≤) of intervals (sets) in R,
i.e. (τ(R),≤) ∼= (∆+,≤). We have augmented lattice (τ(R),≤) by a least (empty)
interval, denoted by O = [+∞,−∞]. Note that a greatest interval I = [−∞,+∞]

1A map ψ : (P,≤) → (Q,≤) is called (order) isomorphism if and only if both
“x ≤ y ⇔ ψ(x) ≤ ψ(y)” and “ψ is onto Q”. Two lattices (P,≤) and (Q,≤) are
called isomorphic, symbolically (P,≤) ∼= (Q,≤), if and only if there is an isomorphism
between them.
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already exists in τ(R). Hence, the complete lattice (τO(R) = τ(R) ∪ {O},≤)
emerges — For simplicity, we use symbols O and I to denote the least and
greatest element, respectively, in any complete lattice.

A (strictly) decreasing bijective, the latter means “one-to-one”, function θR :
R → R implies an isomorphism (R,≤) ∼= (R,≥); i.e. x < y ⇔ θR(x) > θR(y),
x, y ∈ R. Furthermore, a strictly increasing function vR : R → R is a positive
valuation2 in lattice (R,≤). Therefore, function v∆ : ∆ → R given by v∆([a, b]) =
vR(θR(a)) + vR(b) is a positive valuation in lattice (∆,≤) [5]. It follows a metric
function d∆ : R → R≥0 given by d∆([a, b], [c, d]) = v∆([a, b] ∨ [c, d])− v∆([a, b] ∧
[c, d]) = [vR(θR(a ∧ c)) − vR(θR(a ∨ c))] + [vR(b ∨ d) − vR(b ∧ d)]. In particular,
metric d∆ is valid in lattice (∆+ ∪ {O},≤) ∼= (τO(R),≤).

Functions θR(.) and vR(.) can be selected in many different ways. For in-
stance, choosing both θR(x) = −x and vR(.) such that vR(x) = −vR(−x) it
follows positive valuation v∆([a, b]) = vR(b) − vR(a); hence, it follows metric
d∆([a, b], [c, d]) = [vR(a∨ c)− vR(a∧ c)]+ [vR(b∨d)− vR(b∧d)] [6]. In particular,
for θR(x) = −x and vR(x) = x it follows metric d∆([a, b], [c, d]) = |a− c|+ |b−d|.
In general, parametric functions θR(.) and vR(.) may imply tunable nonlinearities.

The space ∆ of generalized intervals is a real linear space [4], [8] with

– addition defined as [a, b] + [c, d] = [a + c, b + d].
– multiplication (by a scalar k ∈ R) defined as k[a, b] = [ka, kb].

A generalized interval in real linear space ∆ is also called vector. A lattice-
ordered vector space is called vector lattice [4].

A subset C of a linear space is called cone if and only if for x1, x2 ∈ C and
real numbers λ1, λ2 ≥ 0 it follows (λ1x1 + λ2x2) ∈ C. It turns out that set ∆+

is a cone. Likewise, set ∆− is a cone.

2.2 The Cone Lattice (F,≤) of Interval Numbers (INs)

Generalized interval analysis in the previous section is useful for studying interval
numbers (INs) in this section. A more general number type is defined first, in
the following.

Definition 2. A generalized interval number, or GIN for short, is a function
G : (0, 1] → ∆.

Let G denote the set of GINs. It turns out that (G,≤) is a complete lattice
since (G,≤) is the Cartesian product of complete lattices (∆,≤).

Addition and multiplication are extended from ∆ to G as follows.

– The sum G1 + G2, G1, G2 ∈ G is defined as Gs : Gs(h) = (G1 + G2)(h) =
G1(h) + G2(h), h ∈ (0, 1].

2Positive valuation is a function v : (L,≤) × (L,≤) → R, which satisfies both
v(x) + v(y) = v(x ∧ y) + v(x ∨ y) and x < y ⇒ v(x) < v(y).

Piecewise-Linear Approximation of Nonlinear Models Based on Interval
Numbers (INs)

15



– The product kG1, k ∈ R and G1 ∈ G, is defined as Gp : Gp(h) = kG1(h),
h ∈ (0, 1].

Our interest here focuses on the sublattice3 of interval numbers defined next.

Definition 3. An Interval Number, or IN for short, is a GIN F such that both
F (h) ∈ (∆+ ∪ {O}) and h1 ≤ h2 ⇒ F (h1) ≥ F (h2).

Let F denote the set of INs. Conventionally, a IN will be denoted by a capital
letter in italics, e.g. F ∈ F. Moreover, a N -tuple IN will be denoted by a capital
letter in bold, e.g. F = (F1, ..., FN ) ∈ FN .

From Definition 3 it follows that a general IN F is written as the set union
of (conventional) intervals, e.g. F = ∪

h∈(0,1]
{[ah, bh]}, where both interval-ends

ah and bh are functions of h ∈ (0, 1] such that ah ≤ bh.
We point out that a IN is a mathematical object, which may be interpreted

as a probability/possibility distribution, an interval, and/or a real number. For
instance, IN F = ∪

h∈(0,1]
{[a, b]} represents interval [a, b] including real numbers

for a = b. Moreover, a IN F may represent a probability distribution such that
interval F (h) includes 100(1 − h)% of the distribution, whereas the remaining
100h% is split even both below and above interval F (h) [4], [7], [8]. In addition,
a IN may represent a fuzzy number as explained in subsection 2.3 below. In all
cases, a IN can be interpreted as a granule (of information).

It has been shown that for F,E ∈ F there follow both (F ∧ E) ∈ F and
(F ∨ E) ∈ F [9]. Hence, (F,≤) is a lattice with ordering F1 ≤ F2 ⇔ F1(h) ≤
F2(h),∀h ∈ (0, 1].

The following proposition introduces a metric in lattice (F,≤) based on a
positive valuation function vR : R → R≥0 [9].

Proposition 1. Let F1 and F2 be INs in the lattice (F,≤) of INs. Assuming
that the following integral exists, a metric function dF : F× F → R≥0 is given by

dF(F1, F2) =

1∫
0

d∆(F1(h), F2(h))dh (1)

We remark that a Minkowski metric dp : FN × FN → R≥0 can be defined
between two N -tuple INs F1 = [F1,1, ..., F1,N ]T and F2 = [F2,1, ..., F2,N ]T as

dp(F1,F2) = [dp
F(F1,1, F2,1) + ... + dp

F(F1,N , F2,N )]1/p (2)

Minkowski metric dp(F1,F2) may involve a point x = [x1, ..., xN ]T ∈ RN such
that an entry xi is represented by trivial IN xi = ∪

h∈(0,1]
{[xi, xi]}, i = 1, ..., N .

Space F is a cone for F1, F2 ∈ F and real numbers λ1, λ2 ≥ 0 it follows
(λ1F1 + λ2F2) ∈ F.

3A sublattice of a lattice (L,≤) is another lattice (S,≤) such that S ⊆ L.
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2.3 Perspectives

A fundamental result in fuzzy set theory is the “resolution identity theorem”,
which states that a fuzzy set can, equivalently, be represented either by its mem-
bership function or by its α-cuts [19]. The aforementioned theorem was given
little attention in practice, to-date. However, some authors have capitalized on
it by designing fuzzy inference systems (FIS) based on α-cuts of fuzzy numbers,
i.e. based on intervals in τ(R) [17], [18]. More specifically, advantages include
faster (parallel) data processing “level-by-level” as well as “orders-of-magnitude”
smaller computer memory requirements for representing, equivalently, fuzzy sets
with arbitrary membership functions.

This work builds on the resolution identity theorem by, first, dropping the
possibilistic interpretation for a (fuzzy) membership function and, second, by
considering its equivalent α-cuts (interval) representation.

3 The Proposed Techniques

This section outlines computational techniques for achieving a piecewise-linear
approximation of nonlinear models based on INs. Further details will be pre-
sented in a future publication.

3.1 Structure Identification

Structure identification is a term from “fuzzy TSK system modeling” [12],[15],[16]
meaning a partition of a model’s input space in subspaces, or clusters, such that
the output to an “input point x = [x1, ..., xN ]T , within a cluster” is a (usu-
ally) linear combination of the N inputs x1, ..., xN . It turns out that the task of
structure identification is not trivial as illustrated in the following.

Consider the data points shown together with piecewise-linear approxima-
tions of two different single-input-single-output models in Fig. 1(a) and Fig. 1(b),
respectively. Fig. 1(a) demonstrates an effective partition (of the input space)
characterized by a small approximation error, whereas Fig. 1(b) demonstrates
an ineffective partition characterized by a large approximation error.

A structure identification method is proposed next based (1) on a novel SOM
extension, and (2) on an advantageous, novel structure identification algorithm.

3.2 A SOM Extension

Each cell Ci,j in the SOM proposed here stores both a N -dimensional IN Fi,j =
[Fi,j,1, ..., Fi,j,N ]T and a (N+1)-dimensional vector ci,j = [ci,j,0, ci,j,1, ..., ci,j,N ]T ,
where i = 1, ..., I, and j = 1, ..., J . On one hand, IN Fi,j ∈ FN represents a
population of data assigned to cell Ci,j . On the other hand, vector ci,j ∈ RN+1

stores the parameters of the following hyperplane

pi,j(x) = ci,j,0 + ci,j,1x1 + ci,j,2x2 + ... + ci,j,NxN (3)
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Fig. 1. Two different, piecewise-linear single-input-single-output models. (a) This
model partitions the input space effectively with a small approximation error using
three lines. (b) This model partitions the input space ineffectively with a large approx-
imation error using two lines.

A cell is called nonempty if at least one datum is assigned to it. A nonempty
cell represents a rule. In particular, the N INs in Fi,j of cell Ci,j correspond
to a (fuzzy) rule antecedent, whereas the N + 1 hyperplane parameters in ci,j

constitute the corresponding rule’s consequent.

3.3 INSOM: A Structure Identification Algorithm

Structure identification is carried out using the novel algorithm INSOM, below.

3.4 Parameter Identification

Algorithm INSOM above induces an “initial” (piecewise-linear) model from a
series (xk, yk) ∈ RN × R, k = 1, 2, ..., n of training data. The objective in this
section is to compute a globally optimum model.

The output of the aforementioned “initial” model is written analytically as

ŷ(xk) = c0 +
L∑

i=1

(ci,0σi +
N∑

j=1

ci,jσixk,j) (4)

where xk = [xk,1, ..., xk,N ]T , furthermore the σis are functions of the (known)
INs. In conclusion, a globally optimum set of hyperplanes is computed by algo-
rithm WRLS in the Appendix.

Further improvement was sought by optimal parameter estimation tech-
niques, which replaced a IN Fi,j by IN F ′

i,j = ai,jFi,j + bi,j , where ai,j ∈ (0, 3] is
a scaling parameter and bi,j ∈ [−1, 1] is a translation parameter, i = 1, ..., L, j =
1, ..., N . More specifically, the task was to compute optimal INs F ′

i,j , in a mean
square error sense, by optimal parameter ai,j , bi,j estimation.

Optimization was pursued by genetic algorithms (GA) [1],[12], where the
phenotype of an “individual” consisted of specific values of parameters ai,j , bi,j .
There was a total number of 2×N ×L parameters binary-encoded to the chro-
mosome of an “individual”. We included 25 “individuals” per generation.

In conclusion, we point out that our “initial” model was computed by al-
gorithm INSOM for structure identification without any employment of fuzzy

18 Vassilis G. Kaburlasos, S. E. Papadakis



Algorithm 1 INSOM: A Structure Identification Algorithm
1: I ← Number of rows in a SOM grid/map
2: J ← Number of columns in a SOM grid/map
3: dθ ← 0.8, `θ ← n/10 //user-defined parameters dθ and `θ
4: createANDinitializeMap(I, J)
5: for r = 1 to Nepochs do //for each epoch
6: Calculate Bp,q(r), a(r) //Bp,q(r) is a neighborhood; a(r) is a weight coefficient
7: wk ← a(r)
8: for k = 1 to n do //for each input datum (xk, yk)
9: FindTheWinner(xk, yk)

10: p← winner row
11: q ← winner column
12: Assign(xk, yk,p,q) //assign input datum (xk, yk) to winner cell Cp,q

13: for i = 1 to I do //for each row
14: for j = 1 to J do //for each column
15: if Ci,j ∈ Bp,q(r) then
16: WRLS(i, j,wk,xk, yk)
17: end if
18: end for//for j
19: end for//for i
20: end for//for k
21: ResetCellsConditionally(`θ)
22: ComputeINs()
23: MergeSimilarCells(dθ)
24: end for//for r
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logic. Whereas, thereafter, parameter identification was pursued based on stan-
dard fuzzy TSK modeling techniques.

4 Preliminary Experimental Results

The effectiveness of our proposed (piecewise-linear approximation) techniques is
demonstrated in this preliminary work on a single-input-single-output nonlinear
system. In the interest of simplicity positive valuation function vR(x) = x was
employed. Furthermore, both input- and output- data were normalized in the
interval [0, 1] by straightforward linear transformation. At the end of all com-
putations, the output data were transformed back to their original domain for
meaningful comparisons.

We considered the simple system described by the following equation.

y = sin(10x) (5)

where x ∈ [0, 1].
Forty input/output data pairs (xk, yk) ∈ R × R, k = 1, ..., 40 were ran-

domly (uniformly) generated. The scatter plot of the generated input/output
data points is shown in Fig. 2(a). Following a popular practice, we employed the
same data set for both training and testing. No validation set was employed.

A 4×4 SOM grid was used to compute a TSK model. The structure identifi-
cation algorithm was applied for Nepochs = 100 epochs resulting in five nonempty
cells — Recall that a nonempty cell represents a rule. The IN/antecedent and
the hyperplane/consequent (the latter is a line here) in each cell are shown in
Fig. 2(b) and Fig. 2(a), respectively. A visual inspection of Fig. 2 reveals that
the proposed method partitions the input space well.

5 Conclusion

This work has proposed a new paradigm, inspired from both Fuzzy Inference
Systems (FISs) of TSK type and Self-Organizing Maps (SOMs), for piecewise-
linear approximation of nonlinear models based on Interval Numbers (INs).

A unique advantage of INs here is their effectiveness in computing colinear
points within a cluster as it will be detailed in a future publication. Another ad-
vantage of our proposed techniques is the fast induction of an optimal number of
rules. Note that the employment of SOM in fuzzy system modeling applications
has been rather sporadic to-date. Nevertheless, different authors have confirmed
the capacity of SOM for rapid data processing [2]. In our future work we have
also planned additional experiments including alternative data sets.
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Fig. 2. (a) Scatter plot of function y = sin(10x) including 40 input/output data points.
The five lines correspond, respectively, to the consequents of five rules. (b) The five INs
correspond, respectively, to the antecedents of five rules — Note that the corresponding
consequent (line) for a IN is shown above the IN.

Appendix

Here we show the Weighted Recursive Least Squares (WRLS) algorithm for
incremental learning.

Consider a series of data vectors [xk,1, ..., xk,M , yk]T ∈ RM × R, k = 1, ..., n.
The WRLS algorithm computes incrementally the parameters of a hyperplane
in RM+1, optimally fitted, in a least square error sense, to the aforementioned
data. The corresponding equations are shown next.

ck+1 = ck +
(
yk+1 − xT

k+1 · ck

)
kk

kk = Skxk+1
1

wk
+xT

k+1Skxk+1

Sk+1 =
(
I− kkxT

k+1

)
Sk

k = 1, 2, ..., n.

(6)

The equations above are initialized at k = 0 with c0 = 0 and S0 = aI, where
a ∈ R is typically large, e.g. a = 1000. Vector ck = [ck,0, ck,1, ..., ck,M ]T includes
the optimum hyperplane parameters at a step.
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