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Abstract. A reassonable size ekample @wming from cognitive psychology is re-
analyzed with standard tools of FCA and Lattice Anaysis. Developmental
shifts/ classficaions are explored on a descriptive and graphicd viewpaint,
through attribute implications and unglued decomposition in regular intervals.
This assesses child similarities in performance and behavior, while cmparing
interval s focuses on what chil dren misscoll edively to make further progress
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I ntroduction

A first aim behind this paper is to address two topics of the conference CLA'07 :
“visualizing inherent properties in data sets’ / “clasdfying systems based on
relationships among objeds and attributes through the concept of mathematicd
lattices” and to make this address concrete on a red example. In such a way the
graphicd outputs do not reduceto usual small models though staying till readable.
Seaondy, to try convincing the researchers in educaional / cognitive sciences that
basic todls of Lattice Theory [Bi67] and Formal Concept Analysis (FCA, [GW99]) —
which we usually mix together in French as Analyse Latticielle [D99]- can be most
useful for describing their data and help in modeling undlying processs. All over
the yeas, we have had many collaborations in applying Lattice Analysis to topics
from the social and medica sciences (see[D99] and application papers quaed there)
up to genetics (see [C&AIO]], [Do&AIO1], and [D&AO]]), but not with that many
cognitive scientists, athoughFCA haswell sprea in their close community of Al.
Third motivation, to try sharing our experiencein visuali zing lattice properties with
our computer program (GLAD: General Lattice Analysis & Design, see [D83-96]).
Instead of giving the program code which has been asked sometimes in conferences
and surrounding communities -but would na make sense since it’s now of an ddish
system dependent conception- it seamsto us far better to display convincing examples
following carefully chosen feaures and to ill ustrate spedfications through examples.
Last, as we did arealy twenty yeas ago with a paper attesting the usefulness of
Lattice Theory and some of its ¢andard tools to formalize and generate experimental
designs (by charaderizing them as partition sublattices £e[D86)]), it’s a bow to the
cdebrated paper by G. Birkhoff: “What can lattices do for you?” ([Bi70]) which
primed our own interest in applications of Lattice Theory to surroundng dsciplines.



To follow these objedives, we will come badk to a data set that Dr. Camilo
Charron colleded -and analyzed with statistica methods in his thesis (see[Cha99])-.
This example can be dasdfied between cogntive sciences/ developmenta &
educdional psychology. A small data subset has been extraded from a cdapter
devoted to “developmental shifts and knowledge transformations aong the
construction of natural and relative numbers’ in children (4-14 yeas old).

Naturally, we will not enter deeply in the questions of semantics and
interpretations, referring to the original work -or subsequent papers- to get more
predse descriptions of the psychologicd and educational setting. We will follow ago-
between attitude, linking separated topics and communities: to say enough about the
content so that a user of FCA can understand the kind of spedfic questions
encountered there, and redprocdly to ill ustrate and comment the tools and techniques
with simple words © that psychologists can foreseethe kind of drawbadks they could
get after asmall i nvestment in papers on FCA giving them more abiliti es and insights.

Basic data and original questions

Out of the aght groups of children under study, only three are kept here (age
45/55/6.5 yeas old). They are -in French- denoted MS:.”moyenne sedion’,
GS:"grande sedion” and CP:"cours préparatoire”, the latter being the first yea of
elementary schod, the others being the last two yeas of nursery schod. Each group
comprises 31 children, which passed a series of ten —‘a la Piaget”- experiments to
evaluate their mastering o operations and relations on natural numbers. Hence for
ead group d children the basic data cmnsists in a binary table C, xA ,—{0,1}, for
which (c,a)=1 whenever the dild “c” masters attribute “a”, and (c,8=0 atherwise.
The ten attributes kept here concern only properties of natural numbers, operations
andrelations: for instance order-ct means mastering: [a>b & c=d implies a+c > b+d].

A: or der F: di fference

B:equality G cl ass-equi v.

C. order-ct H: counti ng

D: equal i ty-ct |:identity-c

E:addition J:commut ati v.
(ct:conservation by translation, c: conservation)

Table 1. The atributes describing properties and operations on natural numbers.

As claimed in the thesis “The am is to deted shifts [ruptures] of development
along the construction d natural and relatives numbers...”, which is made predse
later with additional hypothesis: “Child developments will be partially ordered, which
will be asessed by child profiles [patrons de répormses] that will be geneticdly
ordered and structured by exad [as opposed to asciation rules] implications.
Implications will point out shift and/or knowledge transformations’. The main
questions will be taken in charge naturally by implications which are one of the basic
tools of FCA (J[GW99 §23]), and these mgnitive questions have an intensiond
nature. We will try to show that other natural questions relative to child classficaions
can aso be raised, addressng more extensiond —and educaional - questions.



L attice and analysistoolkit

The prerequisites for mastering the analysis and understanding the graphics comprise
a few standard theorems and properties of FCA (see [GW99]) and applications of
lattice analysis ([D99]). They will not be repeaed here in mathematicd terms, that
would be useless and redundant. However they will be commented in everyday
words, as areminder and so that not-lattice-minded-users can foreseethe mntent.

The basic data -for ead group- can be seen as a binary relation I0C, XA, which is
represented by a so-cdled “context” (C,,A,,I0C, XA, keeping tracks of the children
and attribute labels, where (c,@ 0l means children “c” masters attribute “a”. For a
subset BOA,, of attributes let B':={c[JC,/cla dl alB} be its extension. For a subset
DOC,, of children let D":={alA,/dla dl dOD} be its intension. As B'''=B" (all
BOA,) andD'''=D' (al DOC,), the pair of maps B B' (al BOA,) andD- D' (all
DOC,, defines a Galois conredion between the power sets of A,  and C,,, and two
closure operators in them, that gives the matching extensions/ intensions. In words,
by the Galois/ concept lattice construction the ntext is unfolded in a concept
system which can be drawn, ead concept being defined bah in extension/ intension,
and the organizaion of concepts being driven upwards by the join operation (defined
by intersedion of intensions), and dwlly downwards by the mee operation (defined
by intersedion of child groups). These underlying mathematica structures are known
sincethe first 1940 edition d [Bi67], and papers by O. Ore (see[044]) and athers.

Now a lattice ca become redly cumbersome and complex to draw, so that it is
most often useful to label it minimally by locaing each attribute dJA at (a',a'") i.e.
the higher concept to which it belongs, and dually to locate eah child cOC at (¢'*,c")
that is the lowest concept having c in its extension. Pointing to any lattice éement, its
intension can be reconstructed by taking all attributes above it aong the ordered
lettice, and its extension comprises all children below it. A second drawing
simplificaion introduced since the beginning of FCA [Wi82] is to start a lattice
drawing for only a subset of attributes, and to introduce the remaining in a nested line
diagram erasing lines parall €l to those that are grafting these remaining attributes.

The dudlity between extensions/ intensions is also carrying implications between
attributes (symmetricdly between children, that are meaningful in a social network
perspedive: who is together with whom?). When two attributes a,blJA are such that
a'[b' -so that a<b in the lattice- this can be read as a simple (premise) implication
a - b. When (ab)' '=abcd, this indicates that ab — cd holds in the data. Both kind o
implications can be dedphered graphicdly in the lattice The simple ones will define
the (pre)order of attributes, whil e the latter will be recognized by: the mee of a and b
will “capture” c,d upwards. Fortunately, there is a canonical basis of implications
summarizing all those holding in the data, which was the main result of [GD84-86]
(see &so [D84-87] for amore latticial version and [G84-87] for anice dgorithm).

Ancther procedure that will be used is the lattice ungued decomposition [GW99
84.2]. The original idea came from classes of lattices encourntered in Mathematics -
distributive, moduar- since they are decomposable in maximal atomistic intervals, a
construction that have been generalized to arbitrary lattices using tolerances (i.e.
similarities respeding lattice operations as lattice conguences do) and the lattice
cover relation. In words, it isaway to look at the lattice “from further” by considering
faithful simil ariti es between attributes, and symmetricaly upwards between chil dren.



Intra-group results and analysis

For the first group (“MS’, average age 4.5 years) the order of attributes —weighed
with the % of the dtribute’s extension/ the 31 children- is displayed in Fig. 1 (top
left). It shoud be noted that three dtributes are somehow “easy” for that group since
they are drealy mastered by almost al children (counting 94%, equality 90%, order
84%). Many other attributes imply some of the latter, creaing an attribute order of
length one. In particular, the “most difficult” attributes for this group of children
(identity-c, commutativ. 26%, and difference 6%) imply all three eay attributes.

A nested line diagram of the lattice is unfold (top right), aong commutativ. and
difference -meaning that the lines parall el to the one joining commutativ. to its upper
cover have not been drawn for simplifying the drawing. First remark completing the
fad that there ae many order relationships/ dependence between pair of attributes,
the lattice has 53 elements, which is small as compared to the 2'°=1024 subsets of A ,
that would be observed if there were a @mplete independence of the 10 attributes.

In the powerset of attributes this means that the dosure operator B|-B'" (al BOA)
that generates the intensions, at the same time generates a lot of eguivalence and
implicaions between conjunctions of attributes. This can be summarized by the
canonicd basis of implicaions, which is listed at left hand side below the order of
attributes in Fig. 1, together with the identificaion number 1-21 and the
extensions/ suppats. The implicaions are dso grafted into the nested line diagram of
the lattice, where they can be located by their identification number and intension,
which is obtained from the list by taking the union o their premise and conclusion.
Hence for instance, the first simple implicaion (n°-6) at the list top, isG - AH,
and means that the 19 children mastering G=classequiv. master A=order &
H=courting aswell. It can be locaed at the top right of the lattice and also dedphered
in the lattice structure by the fad that the intension of the dement labelled G is GAH,
since olleding G and H aong the lattice lines above G. As for non-smple
implicaion with complex premises, for instance below implicaion -6 is locaed
implicaion -7 -which reads ACEH - G- indicaes that the d@ght children that
master A=order & C=order-ct & E=addtion & H=courting master classequiv.
In the basis list, the implicaions have been ranked by extension's deaeasing order.
Within the lattice closer their intension is to the lattice top, bigger their intension is
obvioudly. Dualy, closer to the bottom they have smaller extensions. Now some
implicaions could be understood as natura / obvious/ “by construction”. Thus, that
D=egality-ct - B=equdity will not surprise awybody, even if their percentage
extensions 58% / 90% may require some comments. Other implications may come
from sampling questions: after al 31 children for exploring and assessng something
definite on a universe with 2°elementsis not alot... Hence, the basis of implicaions
shoud be scanned thoroughy by the reseaccher with al these considerationsin mind.

On a "macao level”, the lattice is decomposable in six intervals (see Fig. 2) by
undued decompasition, which is quite a strong since rare property for arbitrary
lattices. These intervals are ordered along a 2x3 product of chains. This gives a maao
scding d attributes of “similar difficulty level” —regarding that group d children-,
with the eay attributes courting-equality-order to which is now added classequiv. at
the top, which are foll owed downwards by more difficult attributes ded in two



Progrom GLAD (C) 1992 V.Duquenne Paris.

MS
2 100
|
B ‘.‘H:cynthvg Az%rder B
=equality kb - o
T=identity-c G=class-equiv B=equality H=counting A=order
6 '\ 51
26 © D=equality-ct 10

Dzequoh’tgct Ciorderfct I=identity-c- 4

E=addition
539

F=difference' 122 G=class-equiv

619 G ---) AH
218D ---) B
115C --=) H i
315 ABD ---) H
412 E --=) AH \

3
18 8 J ---) ABH F=difference J=commutati 131

12

13 81 ---) B A 104

110

7 8 ACEH - G 3 126

15 7 BHI ---) AG X

14 7 ABI ---) GH 20 1 ABFHJ ---) CDEGI

8 7 ABDEH ---) & 12 1 ABFGH ---) CDELJ

19 4 ABCHJ —--» D 11 1 ABEFH ---) CDGLI " 18
pd

17 3 ABEGHI ---> D 10 ABDFH ---) CEGLJ

5 2F ---) ABH 9 ABCFH ---) DEGLJ

16 2 ABCDGHI ---) J 21 ABCDEGHL) ---) F
|

13

-

#-supports(/31)

#-implication 123

Fig. 1. Attribute order (top left) and nested line diagram of the lattice (right) along
difference & comrutativ., with canonicd basis of 21 implicaions and their supports.
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Fig. 2. Unglued decomposition in the dired product of 2x3 intervals. Each interval
groups together the atributes of similar difficulties. Dually the dildren are grouped
and scded in homogeneous groups regarding their level of performance



distinct diredions, order-ct above addition on the one hand, and (idendity-c, equality-
ct) on the other, which are themselves refined by commutativ. then difference. Notice
that in that 2x3 dired product of intervals, comnutativ. is below order-ct, while
differenceis below al intervals, hence with maximum difficulty level for that group.
However this doesn’t mean that difference is made comparable with addition in the
lattice order relation: it is below in the 2x3 lattice of intervas i.e. for the “maao”
difficulty levelsthat are made similar & scded by the simil arity (tolerance) relation.

The 2x3 interval product structures the (pre)order of children in terms of similar level
of performance. The maximum element of the bottom interval is the lower cover of
the dement labeled 121 (close to the top) of which the intension is ABH, and
extension comprises 23 ou of the 31 children. This means that the five other intervals
structure the nine remaining children, some of which being in difficulties: for instance
child 121 (at the top) may require spedal attention and support, and the same is true
for kids 115/ 103 (top right), or 122/105/ 116/ 177 (top left), but with dfferent
programs. An interesting oucome of this analysis could be to make proposals to
congtitute homogeneous groups of children of “similar level of performance”.

A teader aware of this information in red time ould consequently define
strategies for planning games and exercises for training the kids regarding their
spedfic neals. Besides personalized cares as before, the teadier may want to train
bigger groups of children, if possble made homogeneous. For example, the fifteen
children that belong to the interval containing child 116 and comrutativ. (bottom left,
between child 107 and equality & counting) share the property of “not mastering
classequiv. and addtion’; all of them should benefit of speda games/ training
spedficdly oriented to master these two attributes. Hence, looking within intervals
reveds the spedficity of performances for children of similar level, while cmparing
intervals can focus on what they missor require to coll edively make further progress

For the second goup (“GS’, age 5.5 yeas) the global structure is quite different.
Counting and order are now mastered by all the dildren, hence become superfluous
regarding the lattice structure, and crede @ght obvious implicaions (expelled from
the basis, see Fig 3, top left). There is only one simple implication left identity-
¢ - equdity & classequiv., arather poor order structure between attributes, although
the latticeis quite small (61 o of the potential 2°=256 elements). Five atributes are
mastered by more than 8746 of the children, comnutativ. and difference are no more
under-represented, with nawv 48% and 58%, respedively. This contributes to the fad
that the lattice has many elements below them: they aswciate in similar ways with
other attributes (as opposed to what is occurring for “MS’-group), along rearly
isomorphic intervals (ideds). Out of the twelve implications whose extensions are &
least ten, after having removed superfluous A, H from their premises, nine have two
attributes (ex: FG - B). As compared with the younger “MS’-group, it could be said
that the general structure for the group of “GS’-children explodes in the diredion of
pairwise independence between attributes, almost without order relationships between
them, but global independence and combinatorial explosion are tamed and reduced by
a series of rather simple premise implications going in al diredions. This explosion
will perhaps not surprise teaders and parents who know that grande-sedion, which is
thelast yea of école maternell e before the more acaemic universe of éole primaire,
isaspeda turninthe arriculum of children, ayea of all discoveries...
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Fig. 3. Nested line diagram of the lattice (group 2: “GS’), with canonicd basis of
implicaions (18 out of 26, counting & order being confused with the top generate 8
obvious implications) and supports. Here, only (I -~ ABGH) hasasimple premise.

As for the third group (“CP’, age 6.5 yeas), 12 kids (out of 31) master al the
attributes (to be cwmpared with orly one and threefor the younger “MS’ and “GS’
groups, respedively), and most of the others are dose -even very close- to the bottom.
Thisisreasauring: amajority of these children now master almost all the 10 attributes.
Moreover, five dtributes recave more than 8%, whil e the others get between 58%-
74%. After removing the threesuperfluous attributes (confused to the top with 100%),
it remains only nine implicationsin the canonicd basis, with orly difference — class
equiv. — order and commnutativ. — order which scde and order the dtributes (see
Fig. 4). These three simple implications control the lattice undued decomposition
downwards (seeFig. 5), in a dhain of threetotally ordered intervals.

At the top, there are only two children (321,326) who do nd master order —and a
fortiori the dtributes implying order- and are somehow in dfficulty: they shoud be
helped spedficdly. The midde interval (between children 320,328 up to order)
contains 10 children. They should be trained abou difference to try colledively to
master it and move down to the bottom interval. Downwards there ae 18 children
who al master difference, which is dill the more difficult attribute for this older
group. In this bottom interval, a small group of five kids (306,317,318,319,327) may
have an interest in working first comnutativ. As compared with “GS’, this group is
far from displaying independence, and the analysis ows that three subgroups could
be profitably distinguished to befirst trained on order, or commutativ. and difference.
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Inter-group analysis and conclusion

The threegroups of children have been put together in a C, xA , table, for which the
latticeL,,, is represented by a nested line diagram in Fig. 6. As for the previous “CP’
group, the lattice gpears to be linealy unglued in threeintervals, where the midde
one —between child 204 to counting seeFig 7- comprises 35 children, and can be seen
as down generated by order-ct (60%) and addition (52%). Thetop oreis up generated
by children 121,122 who do na master courting, while the bottom interval can be
seen as down generated by the two challenging attributes comrutativ. (47%) and
difference (41%). This dructure scdes the dildren in threelevels of performance to
master counting or nat, and the same question with comnutativ. and difference

Now, it is interesting to scan through all children’ labels to notice first that older
children have a tendency to be located down in the lattice they know more,
fortunately... But to study this distribution o ages gread along the lattice may also
give teaders the idea to arganize small groups gathering together children of
different forms, because they would have the same or homogeneous performances.
Hence the interval between child 204-classequiv. comprises children of the three
forms who all master classequiv. but not commutativ. nor difference, so that they
could benefit from adivities to get them. This may help in organizing some “groupes
de niveaux” (level groups) in a same school, in the diredion of more open educaion.

Coming bad to intensional questions, one may raise the following ore: because of
the institutional gap between émle maternell e and école primaire, but also due to the
kind of explosion that was dated for the “GS’ group, could it be possble to
summarizein a mmpad way the shift between groups 1+2 (“MS’+”GS") and group 3
(“CP")? A dired answer is available with the nation of relative @norical basis of
implications (see [Do& AlO1] and GLAD [83-96]) expressng how the lattice L, —
mixing together the threegroups- is projeded onto the lattice L, (which is a sub-semi-
lattice of L,,,), and that will be dencted by B,,,.. We have used this notion for yeas,
spedally in genetics. The relative basis B, ,,, islisted in Fig. 8 where eat implication
is weighed by its “123"-premise’s extension and “3"-intension’s extension, so that
their difference shows how many “12”-children will be pushed down orto the 3-
intension. The first two implicaions come partly from the fad, that B and H are
superfluous with 100 among “3”-children, and assss (see Fig. 8) that respedively
55 and 60 “12’-children are “pushed” to BH from B and H. Similarly, 57 and 43
“12’-children are “pushed” to ABH and DBH. Many of the remaining implications
contain ABH in their premise, so that BH can be gased to get smple premise, since
A - BH. Hencethe fifth implication may be smplified to A:order & F:difference —
G:classequiv. which concerns 19 children. Interestingly the five remaining
implications in the basis have only C:order-ct or l:indentity-c —or their conjunction-
as a onclusion. Thus, the gap between “MS’+’GS’ and “CP” can be charaderized
with a few implications expressng either that equality and counting are fully
mastered, or how classequiv., order-ct and identity-c are better mastered in “CP”.

Before mncluding, it should be added that the lattice L,,, has a structural property
which isinteresting, even if it could nd be seen easily but was discovered through a
program: out of its 124 intensions, 114 have aunique minimal generator. In words,
for any such intension B' ' A there is exadly one subset BoB'' such that Bo''=B"'
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and which is minimal for this property. Conseguently, the lattice is “nealy” join-
distributive (see GW99 p 228), which means that colledively, the children’
performances behave “nealy” likeif it was gructured onan abstrad convexty space
A lot of literature on convexity lattices has been written. They have many diff erent
charaderizaions (seefor instance[M85]). In particular in such a cnvexity lattice, for
any Bo'' and its unique minimal generator Bo, (Bo'"\{b}) is an intension for all
“exreme points’ b of Bo, so that the interval up-generated by the upper covers of
Bo'' is Boolean. This expresses a property of local independence of extreme points.
In ather words the implication Bo — Bo'" indicaes that the set Bo of “extreme paints
of Bo'"” implieswhat is coll eded “inside” their hull for the convexity structure.

The oonvexity structure provides a model for these three group behavior, but that
can be dso formulated as amodel for ead individual: a child cCOC belongs to such or
such agroup' s extension -say B -if and orly if the dhildren “c” masters a spedfic and
unique set of keys (“extreme” attributes Bo). This provides a fine description of the
minimal prerequisites which are sufficient although recessary for mastering these
mathematica concepts and finding one’s path in the natural number construction.

Relative basisB,,,,
86 31 55 B ---
91 31 60 H ---
86 29 57 A ---
70 27 43 D --
37 18 19 ABFH -
27 18 9 BEH -
24 16 8 ABEFGH --->
27 16 11 ABFGH --->
21 15 6 ABCEGH) --->
25 14 11 ABFGH) ---> C
| #3 |

| (#123- #3)

#123

VV VYV
W™ ™I

H
H
G
C

-->
-->

c
C

Fig. 8. Therelative canonicd basis of implicaion B,,,, summarizes how the dements
of L, are "pushed down" onto its (sub-semi)lattice L, in a minimal way. The
differenceof extents (#123-#3) indicates the number of such children (groups 1,2).

For concluding, this note re-analyzes data on the cnstruction of natural numbers in
children of 4.5-6.5 yeas old, with a descriptive method based onorders and lattices.
The threegroups behave quite diff erently in terms of attribute orders. Whil e the “GS’
order isalmost an antichain of pairwise incomparable dtributes, thetwo cthers-“MS’
and “CP’- have arich structures which are enphasized as they generate unglued
decompositions of the lattices. Surprisingly the same properties apply to the lattice
L,,, that mixes together the three groups. This provides a scding d the dtribute
ordersin subsets of similar difficulties. Dually this gructures the dildren in terms of
homogeneous aub-groups, which would be most interesting for training the kids on
spedfic target attributes. In the same manner a dose examination of L ,, can gverise
to proposals for defining small groups mixing together children of different formsin
the diredion d a more open school. The shift between “MS+GS” to “CP’ has been
charaderized through a relative basis of implications, and L, ,, behaves like convexity
lattices that provides minimal keys as amodel for describing child performance.
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