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Abstract. A reasonable size example coming from cognitive psychology is re-
analyzed with standard tools of FCA and Lattice Analysis. Developmental
shifts / classifications are explored on a descriptive and graphical viewpoint,
through attribute implications and unglued decomposition in regular intervals.
This assesses child similarities in performance and behavior, while comparing
intervals focuses on what children miss collectively to make further progress.
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Introduction

A first aim behind this paper is to address two topics of the conference CLA’07 :
“visualizing inherent properties in data sets”  / “classifying systems based on
relationships among objects and attributes through the concept of mathematical
lattices” and to make this address concrete on a real example. In such a way the
graphical outputs do not reduce to usual small models though staying still readable.

Secondly, to try convincing the researchers in educational / cognitive sciences that
basic tools of Lattice Theory [Bi67] and Formal Concept Analysis (FCA, [GW99]) –
which we usually mix together in French as Analyse Latticielle [D99]- can be most
useful for describing their data and help in modeling underlying processes. All over
the years, we have had many collaborations in applying Lattice Analysis to topics
from the social and medical sciences (see [D99] and application papers quoted there)
up to genetics (see [C&Al01], [Do&Al01], and [D&A01]), but not with that many
cognitive scientists, although FCA has well spread in their close community of AI.

Third motivation, to try sharing our experience in visualizing lattice properties with
our computer program (GLAD: General Lattice Analysis & Design, see [D83-96]).
Instead of giving the program code which has been asked sometimes in conferences
and surrounding communities -but would not make sense since it’ s now of an oldish
system dependent conception- it seems to us far better to display convincing examples
following carefully chosen  features and to ill ustrate specifications through examples.

Last, as we did already twenty years ago with a paper attesting the usefulness of
Lattice Theory and some of its standard tools to formalize and generate experimental
designs (by characterizing them as partition sublattices see [D86]), it’ s a bow to the
celebrated paper by G. Birkhoff: “What can lattices do for you?” ([Bi70]) which
primed our own interest in applications of Lattice Theory to surrounding disciplines.
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To follow these objectives, we will come back to a data set that Dr. Camilo
Charron collected  -and analyzed with statistical methods in his thesis (see [Cha98])-.
This example can be classified between cognitive sciences / developmental &
educational psychology. A small data subset has been extracted from a chapter
devoted to “developmental shifts and knowledge transformations along the
construction of natural and relative numbers” in children (4-14 years old).

Naturally, we will not enter deeply in the questions of semantics and
interpretations, referring to the original work -or subsequent papers- to get more
precise descriptions of the psychological and educational setting. We will follow a go-
between attitude, linking separated topics and communities: to say enough about the
content so that a user of FCA can understand the kind of specific questions
encountered there, and reciprocally to ill ustrate and comment the tools and techniques
with simple words so that psychologists can foresee the kind of drawbacks they could
get after a small i nvestment in papers on FCA giving them more abiliti es and insights.

Basic data and original questions

Out of the eight groups of children under study, only three are kept here (age
4.5 / 5.5 / 6.5 years old). They are -in French- denoted MS:”moyenne section” ,
GS:”grande section” and CP:”cours préparatoire”, the latter being the first year of
elementary school, the others being the last two years of nursery school. Each group
comprises 31 children, which passed a series of ten –“à la Piaget” - experiments to
evaluate their mastering of operations and relations on natural numbers. Hence for
each group of children the basic data consists in a binary table C31xA10→{ 0,1} , for
which (c,a)=1 whenever the child “c” masters attribute “a”, and (c,a)=0 otherwise.
The ten attributes kept here concern only properties of natural numbers, operations
and relations: for instance order-ct  means mastering: [a>b & c=d implies a+c > b+d].

A:order
B:equality
C:order-ct
D:equality-ct
E:addition

F:difference
G:class-equiv.
H:counting
I:identity-c
J:commutativ.

(ct:conservation by translation,   c:conservation)

Table 1. The attributes describing properties and operations on natural numbers.

As claimed in the thesis “The aim is to detect shifts [ruptures] of development
along the construction of natural and relatives numbers…”, which is made precise
later with additional hypothesis: “Child developments will be partially ordered, which
will be assessed by child profiles [patrons de réponses] that will be genetically
ordered and structured by exact [as opposed to association rules] implications.
Implications will point out shift and / or knowledge transformations” . The main
questions will be taken in charge naturally by implications which are one of the basic
tools of FCA ([GW99 §2.3]), and these cognitive questions have an intensional
nature. We will t ry to show that other natural questions relative to child classifications
can also be raised, addressing more extensional –and educational- questions.
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Lattice and analysis toolkit

The prerequisites for mastering the analysis and understanding the graphics comprise
a few standard theorems and properties of FCA (see [GW99]) and applications of
lattice analysis ([D99]). They will not be repeated here in mathematical terms, that
would be useless and redundant. However they will be commented in everyday
words, as a reminder and so that not-lattice-minded-users can foresee the content.

The basic data -for each group- can be seen as a binary relation I⊆C31xA10which is
represented by a so-called “context” (C31,A10,I⊆C31xA10) keeping tracks of the children
and attribute labels, where (c,a)∈I means children “c” masters attribute “a”. For a
subset B⊆A10 of attributes let B↓:={ c∈C31/cIa all a∈B} be its extension. For a subset
D⊆C31 of children let D↑:={ a∈A10/dIa all d∈D} be its intension. As B↓↑↓=B↓ (all
B⊆A10) and D↑↓↑=D↑ (all D⊆C31), the pair of maps B→B↓ (all B⊆A10) and D→D↑ (all
D⊆C31) defines a Galois connection between the power sets of A10 and C31, and two
closure operators in them, that gives the matching extensions / intensions. In words,
by the Galois / concept lattice construction the context is unfolded in a concept
system which can be drawn, each concept being defined both in extension / intension,
and the organization of concepts being driven upwards by the join operation (defined
by intersection of intensions), and dually downwards by the meet operation (defined
by intersection of child groups). These underlying mathematical structures are known
since the first 1940 edition of [Bi67], and papers by O. Ore (see [O44]) and others.

Now a lattice can become really cumbersome and complex to draw, so that it is
most often useful to label it minimally by locating each attribute a∈A at (a↓,a↓↑) i.e.
the higher concept to which it belongs, and dually to locate each child c∈C at (c↑↓,c↑)
that is the lowest concept having c in its extension. Pointing to any lattice element, its
intension can be reconstructed by taking all attributes above it along the ordered
lattice, and its extension comprises all children below it. A second drawing
simpli fication introduced since the beginning of FCA [Wi82] is to start a lattice
drawing for only a subset of attributes, and to introduce the remaining in a nested line
diagram erasing lines parallel to those that are grafting these remaining attributes.

The duality between extensions / intensions is also carrying implications between
attributes (symmetrically between children, that are meaningful in a social network
perspective: who is together with whom?). When two attributes a,b∈A are such that
a↓⊆b↓ -so that a<b in the lattice- this can be read as a simple (premise) implication
a → b. When (ab)↓↑=abcd, this indicates that ab → cd holds in the data. Both kind of
implications can be deciphered graphically in the lattice. The simple ones will define
the (pre)order of attributes, while the latter will be recognized by: the meet of a and b
will “capture” c,d upwards. Fortunately, there is a canonical basis of implications
summarizing all those holding in the data, which was the main result of [GD84-86]
(see also [D84-87] for a more latticial version and [G84-87] for a nice algorithm).

Another procedure that will be used is the lattice unglued decomposition [GW99
§4.2]. The original idea came from classes of lattices encountered in Mathematics -
distributive, modular- since they are decomposable in maximal atomistic intervals, a
construction that have been generalized to arbitrary lattices using tolerances (i.e.
similarities respecting lattice operations as lattice congruences do) and the lattice
cover relation. In words, it is a way to look at the lattice “from further” by considering
faithful similarities between attributes, and symmetrically upwards between children.
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Intra-group results and analysis

For the first group (“MS”, average age 4.5 years) the order of attributes –weighed
with the % of the attribute’s extension / the 31 children- is displayed in Fig. 1 (top
left). It should be noted that three attributes are somehow “easy” for that group since
they are already mastered by almost all children (counting 94%, equality 90%, order
84%). Many other attributes imply some of the latter, creating an attribute order of
length one. In particular, the “most difficult” attributes for this group of children
(identity-c, commutativ. 26%, and difference 6%) imply all three easy attributes.

A nested line diagram of the lattice is unfold (top right), along commutativ. and
difference -meaning that the lines parallel to the one joining commutativ. to its upper
cover have not been drawn for simpli fying the drawing. First remark completing the
fact that there are many order relationships / dependence between pair of attributes,
the lattice has 53 elements, which is small as compared to the 210=1024 subsets of A10,
that would be observed if there were a complete independence of the 10 attributes.

In the powerset of attributes this means that the closure operator B|→B↓↑ (all B⊆A)
that generates the intensions, at the same time generates a lot of equivalence and
implications between conjunctions of attributes. This can be summarized by the
canonical basis of implications, which is listed at left hand side below the order of
attributes in Fig. 1, together with the identification number 1-21 and the
extensions / supports. The implications are also grafted into the nested line diagram of
the lattice, where they can be located by their identification number and intension,
which is obtained from the list by taking the union of their premise and conclusion.

Hence for instance, the first simple implication (n°-6) at the list top, is G → AH,
and means that the 19 children mastering G=class-equiv. master A=order &
H=counting as well . It can be located at the top right of the lattice and also deciphered
in the lattice structure by the fact that the intension of the element labelled G is GAH,
since collecting G and H along the lattice lines above G. As for non-simple
implication with complex premises, for instance below implication n°-6 is located
implication n°-7 -which reads ACEH → G- indicates that the eight children that
master A=order & C=order-ct & E=addition & H=counting master class-equiv.
In the basis list, the implications have been ranked by extension’s decreasing order.
Within the lattice, closer their intension is to the lattice top, bigger their intension is
obviously. Dually, closer to the bottom they have smaller extensions. Now some
implications could be understood as natural / obvious / “by construction” . Thus, that
D=eqality-ct → B=equality will not surprise anybody, even if their percentage
extensions 58% / 90% may require some comments. Other implications may come
from sampling questions: after all 31 children for exploring and assessing something
definite on a universe with 210 elements is not a lot… Hence, the basis of implications
should be scanned thoroughly by the researcher with all these considerations in mind.

On a “macro level” , the lattice is decomposable in six intervals (see Fig. 2) by
unglued decomposition, which is quite a strong since rare property for arbitrary
lattices. These intervals are ordered along a 2x3 product of chains. This gives a macro
scaling of attributes of “similar diff iculty level” –regarding that group of children-,
with the easy attributes counting-equality-order to which is now added class-equiv. at
the top, which are followed downwards by more diff icult attributes scaled in two
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Fig. 1. Attribute order (top left) and nested line diagram of the lattice (right) along
difference & commutativ., with canonical basis of 21 implications and their supports.

Fig. 2. Unglued decomposition in the direct product of 2x3 intervals. Each interval
groups together the attributes of similar diff iculties. Dually the children are grouped
and scaled in homogeneous groups regarding their level of performance.
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distinct directions, order-ct above addition on the one hand, and (idendity-c, equality-
ct) on the other, which are themselves refined by commutativ. then difference. Notice
that in that 2x3 direct product of intervals, commutativ. is below order-ct, while
difference is below all i ntervals, hence with maximum difficulty level for that group.
However this doesn’ t mean that difference is made comparable with addition in the
lattice order relation: it is below in the 2x3 lattice of intervals i.e. for the “macro”
diff iculty levels that are made similar & scaled by the similarity (tolerance) relation.

The 2x3 interval product structures the (pre)order of children in terms of similar level
of performance. The maximum element of the bottom interval is the lower cover of
the element labeled 121 (close to the top) of which the intension is ABH, and
extension comprises 23 out of the 31 children. This means that the five other intervals
structure the nine remaining children, some of which being in diff iculties: for instance
child 121 (at the top) may require special attention and support, and the same is true
for kids 115 / 103 (top right), or 122 / 105 / 116 / 177 (top left), but with different
programs. An interesting outcome of this analysis could be to make proposals to
constitute homogeneous groups of children of “similar level of performance”.

A teacher aware of this information in real time could consequently define
strategies for planning games and exercises for training the kids regarding their
specific needs. Besides personalized cares as before, the teacher may want to train
bigger groups of children, if possible made homogeneous. For example, the fifteen
children that belong to the interval containing child 116 and commutativ. (bottom left,
between child 107 and equality & counting) share the property of “not mastering
class-equiv. and addition” : all of them should benefit of special games / training
specifically oriented to master these two attributes. Hence, looking within intervals
reveals the specificity of performances for children of similar level, while comparing
intervals can focus on what they miss or require to collectively make further progress.

For the second group (“GS”, age 5.5 years) the global structure is quite different.
Counting and order are now mastered by all the children, hence become superfluous
regarding the lattice structure, and create eight obvious implications (expelled from
the basis, see Fig 3, top left). There is only one simple implication left identity-
c → equality &  class-equiv., a rather poor order structure between attributes, although
the lattice is quite small (61 out of the potential 28=256 elements). Five attributes are
mastered by more than 87% of the children, commutativ. and difference are no more
under-represented, with now 48% and 58%, respectively. This contributes to the fact
that the lattice has many elements below them: they associate in similar ways with
other attributes (as opposed to what is occurring for “MS”-group), along nearly
isomorphic intervals (ideals). Out of the twelve implications whose extensions are at
least ten, after having removed superfluous A, H from their premises, nine have two
attributes (ex: FG → B). As compared with the younger “MS”-group, it could be said
that the general structure for the group of “GS”-children explodes in the direction of
pairwise independence between attributes, almost without order relationships between
them, but global independence and combinatorial explosion are tamed and reduced by
a series of rather simple premise implications going in all directions. This explosion
will perhaps not surprise teachers and parents who know that grande-section, which is
the last year of école maternelle before the more academic universe of école primaire,
is a special turn in the curriculum of children, a year of all discoveries…
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Fig. 3. Nested line diagram of the lattice (group 2: “GS”), with canonical basis of
implications (18 out of 26, counting & order being confused with the top generate 8
obvious implications) and supports. Here, only  (I → ABGH)  has a simple premise.

As for the third group (“CP” , age 6.5 years), 12 kids (out of 31) master all the
attributes (to be compared with only one and three for the younger “MS” and “GS”
groups, respectively), and most of the others are close -even very close- to the bottom.
This is reassuring: a majority of these children now master almost all the 10 attributes.
Moreover, five attributes receive more than 80%, while the others get between 58%-
74%. After removing the three superfluous attributes (confused to the top with 100%),
it remains only nine implications in the canonical basis, with only difference → class-
equiv. → order and commutativ. → order which scale and order the attributes (see
Fig. 4). These three simple implications control the lattice unglued decomposition
downwards (see Fig. 5), in a chain of three totally ordered intervals.

At the top, there are only two children (321,326) who do not master order –and a
fortiori the attributes implying order- and are somehow in difficulty: they should be
helped specifically. The middle interval (between children 320,328 up to order)
contains 10 children. They should be trained about difference to try collectively to
master it and move down to the bottom interval. Downwards there are 18 children
who all master difference, which is still t he more difficult attribute for this older
group. In this bottom interval, a small group of f ive kids (306,317,318,319,327) may
have an interest in working first commutativ. As compared with “GS”, this group is
far from displaying independence, and the analysis shows that three subgroups could
be profitably distinguished to be first trained on order, or commutativ. and difference.
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Fig. 4. Attribute preorder and the canonical basis of implications (9/16,
equality &  counting being confounded). There are only three simple implications.

Fig. 5. Unglued decomposition in three intervals down-generated by the implications:
 class-equiv, commutativ. → order  and  difference → class-equiv, respectively.
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Inter-group analysis and conclusion

The three groups of children have been put together in a C93xA10 table, for which the
lattice L123 is represented by a nested line diagram in Fig. 6. As for the previous “CP”
group, the lattice appears to be linearly unglued in three intervals, where the middle
one –between child 204 to counting see Fig 7- comprises 35 children, and can be seen
as down generated by order-ct (60%) and addition (52%). The top one is up generated
by children 121,122 who do not master counting, while the bottom interval can be
seen as down generated by the two challenging attributes commutativ. (47%) and
difference (41%). This structure scales the children in three levels of performance: to
master counting or not, and the same question with commutativ. and difference.

Now, it is interesting to scan through all children’ labels to notice first that older
children have a tendency to be located down in the lattice: they know more,
fortunately... But to study this distribution of ages spread along the lattice may also
give teachers the idea to organize small groups gathering together children of
different forms, because they would have the same or homogeneous performances.
Hence, the interval between child 204-class-equiv. comprises children of the three
forms who all master class-equiv. but not commutativ. nor difference, so that they
could benefit from activities to get them. This may help in organizing some “groupes
de niveaux” (level groups) in a same school, in the direction of more open education.

Coming back to intensional questions, one may raise the following one: because of
the institutional gap between école maternelle and école primaire, but also due to the
kind of explosion that was stated for the “GS” group, could it be possible to
summarize in a compact way the shift between groups 1+2 (“MS”+”GS”) and group 3
(“CP”)? A direct answer is available with the notion of relative canonical basis of
implications (see [Do&Al01] and GLAD [83-96]) expressing how the lattice L123 –
mixing together the three groups- is projected onto the lattice L3 (which is a sub-semi-
lattice of L123), and that will be denoted by B3/123. We have used this notion for years,
specially in genetics. The relative basis B3/123 is listed in Fig. 8 where each implication
is weighed by its “123”-premise’s extension and “3” -intension’s extension, so that
their difference shows how many “12”-children will be pushed down onto the 3-
intension. The first two implications come partly from the fact, that B and H are
superfluous with 100% among “3” -children, and assess (see Fig. 8) that respectively
55 and 60 “12”-children are “pushed” to BH from B and H. Similarly, 57 and 43
“12”-children are “pushed” to ABH and DBH. Many of the remaining implications
contain ABH in their premise, so that BH can be erased to get simple premise, since
A → BH. Hence the fifth implication may be simpli fied to A:order &  F:difference → 
G:class-equiv. which concerns 19 children. Interestingly the five remaining
implications in the basis have only C:order-ct or I:indentity-c –or their conjunction-
as a conclusion. Thus, the gap between “MS”+”GS” and “CP” can be characterized
with a few implications expressing either that equality and counting are fully
mastered, or how class-equiv., order-ct and identity-c are better mastered in “CP” .

Before concluding, it should be added that the lattice L123 has a structural property
which is interesting, even if it could not be seen easily but was discovered through a
program: out of its 124 intensions, 114 have a unique minimal generator. In words,
for any such intension B↓↑⊆A there is exactly one subset Bo⊆B↓↑ such that Bo↓↑=B↓↑
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Fig. 6. Nested line diagram of the lattice (groups 1,2,3: 93 kids) with canonical basis
of implications and their supports. A child’s first digit indicates his / her group (1-3).

Fig. 7. Attribute order and lattice decomposition into three intervals, generated by
order-ct, addition → counting and difference, commutativ. → counting &  order.
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and which is minimal for this property. Consequently, the lattice is “nearly” join-
distributive (see GW99 p. 228), which means that collectively, the children’
performances behave “nearly” like if it was structured on an abstract convexity space.
A lot of literature on convexity lattices has been written. They have many different
characterizations (see for instance [M85]). In particular in such a convexity lattice, for
any Bo↓↑ and its unique minimal generator Bo, (Bo↓↑\{ b} ) is an intension for all
“extreme points” b of Bo, so that the interval up-generated by the upper covers of
Bo↓↑ is Boolean. This expresses a property of local independence of extreme points.
In other words the implication Bo → Bo↓↑ indicates that the set Bo of “extreme points
of Bo↓↑” implies what is collected “ inside” their hull  for the convexity structure.

The convexity structure provides a model for these three group behavior, but that
can be also formulated as a model for each individual: a child c∈C belongs to such or
such a group’s extension -say B↓ -if and only if the children “c” masters a specific and
unique set of keys (“extreme” attributes Bo). This provides a fine description of the
minimal prerequisites which are suff icient although necessary for mastering these
mathematical concepts and finding one’s path in the natural number construction.

Relative basis B3/123

86 31 55 B ---> H
91 31 60 H ---> B
86 29 57 A ---> BH
70 27 43 D ---> BH
37 18 19 ABFH ---> G
27 18  9 BEHI ---> C
24 16  8 ABEFGH ---> C
27 16 11 ABFGHI ---> C
21 15  6 ABCEGHJ ---> I
25 14 11 ABFGHJ ---> CI

  |  #3 |
  |    (#123-#3)
  #123

Fig. 8. The relative canonical basis of implication B3/123 summarizes how the elements
of L123 are  "pushed down"  onto its (sub-semi)lattice L3 in a minimal way. The
difference of extents (#123-#3) indicates the number of such children (groups 1,2).

For concluding, this note re-analyzes data on the construction of natural numbers in
children of 4.5-6.5 years old, with a descriptive method based on orders and lattices.
The three groups behave quite differently in terms of attribute orders. While the “GS”
order is almost an antichain of pairwise incomparable attributes, the two others -“MS”
and “CP”- have a rich structures which are emphasized as they generate unglued
decompositions of the lattices. Surprisingly the same properties apply to the lattice
L123 that mixes together the three groups. This provides a scaling of the attribute
orders in subsets of similar difficulties. Dually this structures the children in terms of
homogeneous sub-groups, which would be most interesting for training the kids on
specific target attributes. In the same manner a close examination of L123 can give rise
to proposals for defining small groups mixing together children of different forms in
the direction of a more open school. The shift between “MS+GS” to “CP” has been
characterized through a relative basis of implications, and L123 behaves like convexity
lattices that provides minimal keys as a model for describing child performance.
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