
1

 Some var iations on Alan Day’s algor ithm for
calculating canonical basis of implications

Vincent Duquenne

CNRS-ECP6, Université Pierre et Marie Curie,
175 rue du Chevaleret, 75013 Paris, France

duquenne@math.jussieu.fr

Abstract. Two variations of an algorithm by Alan Day for reducing a list of
implications regarding redundancy are given, with a new simple justification.
All three algorithms have the property that the list can be reduced in place -at
no extra memory cost- that wil l be useful for large applications and databases.

Keywords: basis of implications, closure operator, reduction in place, redundancy.

Introduction

Many years after having “ introduced implication basis into FCA” (as noted in
[GW99 p.94]) which dates back to the fall of 1983 (see [GD84-86], [G84-87], [D84-
87]), it is surprising if not hard to acknowledge that we didn’ t learn a lot more on
“ their intimacy” in the meantime, despite many interesting papers using or revisiting
them. In that respect, a special attention should be paid to one of the last papers by
Alan Day ([Day92]), who spent several months of his spare time to clarifying the
interest of Lattice Theory for putting databases into canonical forms, by decomposing
them through functional dependencies and relation schemes. This was linked with
other works (among which [W95]) that made precise the connections with functional
dependencies ([MA83]) -classical in databases and AI-, to the FCA community. More
recently we had ([D&A01], [O&D03-07], [V&D03-07]) to device some variations
around Alan’s algorithm and some pain to explain how they work which we now do.

Let A be a (finite) set of attributes, L:={ Xi→Yii∈I, Xi,Yi⊆A} be a li st of

attribute implications, and let consider the two closure operators:
(1) L-closure, X|→L(X) for all X⊆A, that is defined by reiteration of

XL:=X∪∪{ YiXi→Yi∈L, Xi⊆X} up to reaching a fixpoint (hence finiteness…),

namely L(X):=XL...L=(XL...L)L which is the consequence of X, and similarly,

(2) L-saturation X|→L°(X) for all X⊆A, L°(X):=XL°...L°=(XL°...L°)L° defined

by reiteration of XL°:=X∪∪{ L(Xi)Xi→Yi∈L, Xi⊆X, L(Xi)≠L(X)} .

The L-saturation L°(X) is a restricted consequence of X for “what is already known
for smaller premises than X out of X’s L-closed class” . Notice how it is a bit harder to
handle since dependent of the L-closure due to the condition L(Xi)≠L(X) that requires

to have L(X) at hand when calculating L°(X) and will t hus slow down algorithms.

2

An implication is full whenever its conclusion is L-closed, L itself is said to be full
when L:={ Xi→L(Xi)i∈I, Xi⊆A} , which could be taken as a strong hypothesis, but

is very natural when the input is a context. To avoid repeating Xi→Yi∪Xi all the time

in the sequel, we always suppose that L:={ Xi→Yii∈I, Xi,Yi⊆A} is such that Xi⊂Yi
(i∈I) and sometimes that L is full , specifying wherever results and algorithms can be
extended to famili es of non-full implications. We freely mix together our original
terminology and denotations with more established ones in FCA [GW99].

Now, X=L°(X) is called L-saturated for short. A saturated subset L°(X) is called L-
quasi-closed when not closed L°(X)≠L(X) –some authors did differently…-, in which
case L(X) is called essential L-closed (or meet-essential element of the ∩-semi-lattice
of L-closed subset, see [D84-87, D91]). L°(X) is called L-pseudo-closed when ⊆-
minimal L-quasi-closed in { Y⊆AL(Y)=L(X)} . The set BL:={ X→L(X)X L-

pseudo-closed} is called the canonical basis of L (saturated moreover, if necessary,
sometimes Guigues-Duquenne basis or – a new comer- stem basis in FCA’s folklore).

The main result in [GD84-86] states that BL is a minimal set of implications

inferring L -for usual propositional calculus, or so-called Armstrong rules- and that
moreover any such minimal family is in one-one correspondence with BL through a

natural construction, hence the name canonical saturated basis [D84-87 p.225] that
was first chosen. Many authors revisited these notions introducing their own
denotations. Here, we will not come back on that, but focus on some properties of
quasi / pseudo-closed subsets that should be extended for bettering the algorithms.

It is now part of the folklore (see the above references) that:

Lemma 1. For a list L, a subset H⊆L defines the same closure operator (has the same
set of consequences) as L iff H has the same canonical basis as L iff for every L-
pseudo-closed X there is at least one (Xi→Yi)∈H for which Xi⊆X⊂L(X)=H(Xi).

It provided the characterizations formulated in early drafts of [D84-87]:

Lemma 2. For a closure operator L() on A (or a list L of implications...):
1. X=L°(X) iff L(Xi)⊂X for all Xi⊆A s. t. Xi⊂X and L(Xi)⊂L(X).

2. X=L°(X) iff L(Xi)⊂X for all L-pseudo-closed Xi s. t. Xi⊂X and L(Xi)⊂L(X).

3. X is L-pseudo-closed or L-closed iff L(Xi)⊆X for all L-pseudo-closed Xi⊂X.

Remark. (2) reduces (1) to L-pseudo-closed. (3) gives a recursive definition of L-
pseudo-closed subsets, that [G84-87], [GW99] took as a starting definition instead.

Now when starting from a list of implications, it will be enough to rewrite (1) as:

Lemma 3. For a list L:={ Xi→Yii∈I, Xi⊂Yi⊆A} , X=L°(X)

iff L(Xi)⊂X for all (Xi→Yi)∈L such that Xi⊂X and L(Xi)⊂L(X).

Our aim is to complete these basic properties for deriving either the canonical or
some arbitrary basis of a list L, by dropping out redundant implications one at a time.

3

Reducing lists of full i mplications

Lists of full implications will be somehow easier to deal with thanks to the simple:

Lemma 4. For a full li st of implications L:={ Xi→Yi=L(Xi)i∈I, Xi⊂Yi⊆A} ,

(Xi→Yi)∈L and H:=L\{ Xi→Yi} ,

1. H(Xi)≠L(Xi) iff

2. L°(Xi) is L-pseudo-closed and there is no other (Xk→Yk)∈L with L°(Xk)=L°(Xi).

Proof. Since { Xi→Yi∈L, Xi⊆X, L(Xi)≠L(X)} ⊆H⊂L, notice that

(*) for X⊆A with L(X)=L(Xi), X⊆L°(X)⊆H(X)⊆L(X) holds.

Suppose (2) fails. Case 1: L°(Xi) not-quasi-closed hence L-closed L°(Xi)=L(Xi)

implies H(Xi)=L(Xi) by (*). Case 2: L°(Xi) L-quasi-closed not pseudo-closed implies

the existence of a L-pseudo-closed Z with Z⊂L°(Xi)⊂L(Z)=L(Xi), and by Lemma 1

the existence of at least one (Xk→Yk)∈L with L°(Xk)=Z so that

H(Xi)⊇L(Xk)=L(Xi) hence H(Xi)=L(Xi). Case 3: L°(Xi) pseudo-closed and the

existence of some (Xk→Yk)∈L with Xk≠Xi and L°(Xk)=L°(Xi) implies

H(Xi)=H(Xk)=L(Xi). Conversely, suppose that (2) holds: since L°(Xi) is L-quasi-

closed and minimal in its L-closed class for this property, for any (Xk→Yk)∈L such

that Xk⊂L°(Xi), L(Xk)⊂L°(Xi) must hold by Lemma 3, which implies

L°(Xi)=H(L°(Xi)), so that by (*) it comes that Xi⊆L°(Xi)=H(L°(Xi))⊆H(H(Xi))=

H(Xi), hence H(Xi)=L°(Xi)≠L(Xi), by isotony of H() and L°(Xi) is L-pseudo-closed.

Algorithm 1.

Input a full family L:={X i →Yi =L(X i) i ∈I, X i ⊂Yi ⊆A}.

Output: canonical basis B L:={X k→Ykk∈K, X k L-pseudo-
closed} (or an arbitrary one).

1. For i ∈I

2. L=L\{X i →Yi } /drop it out /

3. X=L(X i) /see below Amendment 1/

4. If X ≠Yi Then

5. L=L∪{X →Yi } /restore it when X i was the (last)/

6. Endif /generator of a pseudo-closed/

7. Endfor

We have used this algorithm in GLAD [D83-96] for years, specially in preparing
[D&Al01], [O&D03-07], [V&D03-07]. It has been independently conceived in [R07].

4

Remarks. The negation of Lemma 4 (1) provides a simple criteria for dropping out
redundant implications Xi→Yi in L: when H(Xi)=L(Xi). Notice that otherwise,

H(Xi)=L°(Xi) is so to say automatically delivered L-pseudo-closed thanks to fullness.

Moreover, to get a basis with smaller premises replace 5 by (5’ L=L∪{X i →Yi }) .

The morality of this procedure is that L-pseudo-closed are generated by either their
single generator or last examined generator whenever several are existing in L, which
is another explanation -out of their recursive nature- for their diff iculty to be reached.

A main feature of this algorithm is that the reduction can be done in place. The
price is to suppose the list L full , which takes … full benefit of transitivity and keeps
tracks of implication consequences by isotony after they have been dropped out. The
bonus are that the painful part (statement 3) reduces in time as implications are
dropped out. There is no post-processing to get the pseudo-closed and this can be used
to extract a basis made of the original implications, while preserving the redundant
ones by permutation of L, separating L in two areas basis / redundant implications.

Amendment 1. Statements 3-4 in Algorithm 1 can be replaced by the following:

3’. X=L-conditional(X i ,Y i ,L,Restore)

4’. If (Restore=true) Then

where L-conditional is a function that reiteratively calculates L(Xi) but cancels the

calculus as soon as (if ever) the criteria X=Yi is reached within the iterative loop

(returning Restore=false), and returns L(Xi) otherwise (with Restore=true). As many

implications are redundant in practice, this usually will save time.
Hence, in any circumstances where L is naturally full or can be made full at small

price –which is quite often the case in FCA when the input is a context- this will
avoid to calculate the L-saturation of the Xis by applying the definition and dealing

continuously with both the painful restrictions L(Xk)≠L(Xi) and deadly reiteration.

Fullness provides the clarity and eff iciency of this simple algorithm.

Reducing non-full i mplications

Now, in the context of databases and AI, it may be the case that dependencies are
expressed by non-full implications. For instance, see the new developments in [B06]
that promote canonical direct basis for which the L-closure / saturation do not require
reiteration, but are always reached with a single scan of the basis in construction.

For reducing such lists of implications some specific properties are required:
Lemma 5. Let L:={ Xi→Yii∈I, Xi⊂Yi⊆A} be a list, (Xi→Yi)∈L and

H:=L\{ Xi→Yi} , suppose moreover that H(X)⊂L(X) for some X⊆A, then:

1. X⊆X∪Xi⊂X∪Yi⊆L(X) and L(X)⊇L(Xi), and

2. H(X)⊇Xi, and

3. H(X).not.⊇Yi holds.

5

Proof. (1): H(X)⊂L(X) implies that Xi→Yi must take part in the iterative calculus of

L(X), so that X⊆X∪Xi⊂X∪Yi⊆L(X). By isotony and idempotence of L(), this

implies L(X)⊆L(X∪Xi)⊆L(L(X))=L(X), hence L(X)=L(X∪Xi)⊇L(Xi) must hold.

(2): By contraposition. Since X⊆H(X)⊂L(X) and L\H={ Xi→Yi} hold, H(X).not.⊇Xi
implies H(X)=L(X), a contradiction. (3): Similarly, H(X)⊇Yi⊃Xi implies

H(X)∪Xi=H(X)∪Yi, so that by contraposition of (1), H(H(X))=L(H(X)), but

H(H(X))=H(X) and L(H(X))=L(X), hence H(X)=L(X) should hold, a contradiction,
so that H(X).not.⊇Yi holds as asserted.

This should be made a littl e bit more precise and gives some indications where the
premises X⊂A of non-redundant implications for which H(X)⊂L(X) are, a
potentiality that will be made clearer by the following:

Lemma 6. For a list L:={ Xi→Yii∈I, Xi⊂Yi⊆A} , (Xi→Yi)∈L and H:=L\{ Xi→Yi} ,

1. either H(Xi)⊇Yi, in which case H(Xi)=L(Xi), H()=L() and Xi→Yi is L-redundant,

2. or H(Xi).not.⊇Yi, in which case H(Xi)⊂L(Xi) and H(Xi)=L°(H(Xi)) is L-quasi-

closed and Xi⊆L°(Xi)⊆H(Xi)=L°(H(Xi))⊂L(Xi) holds, that moreover collapses

L°(Xi)=H(Xi) whenever L°(Xi) is L-pseudo-closed and there is no other

(Xk→Yk)∈L with L°(Xk)=L°(Xi) and Yk.not.⊆L°(Xi).

Proof. (1): H(Xi)⊇Yi implies H(Xi)=L(Xi) by contraposition of Lemma 5.3. Suppose

that there exists some X⊂A for which H(X)⊂L(X), this implies H(X)⊇Xi by Lemma

5.2, hence H(X)⊇H(Xi)=L(Xi)⊇Yi holds by isotony of H(), hence H(X)=L(X) by

contraposition of Lemma 5.3, a contradiction, so that H()=L(), and Xi→Yi is

therefore redundant in L. (2): Let H(Xi).not.⊇Yi holds. Xi⊂Yi⊆L(Xi) and

Xi⊆H(Xi)⊆L(Xi) imply that H(Xi)=L(Xi) implies H(Xi)⊇Yi, a contradiction, hence

H(Xi)⊂L(Xi) must hold. Suppose now that H(Xi) is not L-quasi-closed. By Lemma 3

there must exist some (Xk→Yk)∈L for which Xk⊆H(Xi), L(Xk).not.⊆H(Xi) and

such that L(Xk)⊂L(H(Xi))=L(Xi). L(Xk)⊂L(Xi) implies L(Xk).not.⊇L(Xi), hence

H(Xk)=L(Xk), by contraposition of Lemma 5.1. By isotony and idempotence of H(),

Xk⊆H(Xi) implies Xk⊆H(Xk)⊆H(H(Xi))=H(Xi), so that L(Xk)⊆H(Xi), a

contradiction, H(Xi) is thus L-quasi-closed. Xi⊆L°(Xi)⊆H(Xi)⊂L(Xi) follows from

(*) in Lemma 4’s proof. Last, L°(Xi) L-pseudo-closed and there is no other

(Xk→Yk)∈L with L°(Xk)=L°(Xi) and Yk.not.⊆L°(Xi) implies L°(Xi)=H(L°(Xi)),

the above inequaliti es imply that Xi⊆L°(Xi)=H(L°(Xi))⊆H(Xi)⊂L(Xi) hold, but

L°(Xi)⊇Xi implies H(L°(Xi))⊇H(Xi) by isotony, so that H(Xi)=L°(Xi) must hold.

6

Remark. Lemma 6 (1) provides an efficient criteria for dropping out most
redundant implications in L, and in particular all those (Xi→Yi)∈L with L(Xi) not-

essential L-closed (of which the L-closed classes contain no L-quasi-closed subset).
Lemma 6 (2) guaranties that replacing Xi→Yi in L by H(Xi)→H(H(Xi)∪Yi)=L(Xi)

gives an equivalent set of implications with a new premise H(Xi) that is made

automatically L-quasi-closed, without having to calculate any saturation actually.

Together with Lemma 1 and reiteration, this can be used to produce a superset of
the canonical basis, and provides a new simple justification of the algorithm that is
given at the end of [Day92 p. 426], of which the original setting –although focused on
functional dependencies- is somehow complex and quite algebraic in nature, since it
is expressed with sophisticated constructions on semi-lattice congruence relations:

Algorithm 2. [Alan Day 1992 p.426]

Input a family L:={X i →Yi i ∈I, X i ⊂Yi ⊆A}.

Output: an equivalent set of implications
L:={X k→Ykk∈K, X k L-quasi-closed}.

1. For i ∈I

2. L=L\{X i →Yi } /drop it out /

3. Xi =L(X i) /see above Amendment 1/

4. If Y i .not. ⊆Xi Then

5. Yi =L(X i ∪Yi) /restore non-redundant/

6. L=L∪{X i →Yi } /remade full implications/

7. Endif

8. Endfor

Remark. As observed by Alan Day, getting the canonical basis (“critical” basis in
his own terms) out of this new amended list requires a post-processing to sort it and
check premises’ minimal property in their L-closed classes. This is due to the fact that
a non-minimal quasi-closed can be obtained and kept in the list while a smaller
pseudo-closed in the same L-closure class makes it becoming redundant afterwards.
Hence, the reduction process is dependent of the order taken for scanning through L,
and there is no way to insure that quasi-closed are tested in a ⊆-compatible order.

However, a main advantage of this algorithm is to drop out a lot of redundant
implications (statements 2-4), although it cannot detect the L-pseudo-closed sets on
the fly, that could be a handicap for real scale applications and huge databases.

This can be avoided by using their recursive characterization in Lemma 2.3:

7

Algorithm 3.

Input a family L:={X i →Yi i ∈I, X i ⊂Yi ⊆A}.

Output: basis B L:={X k→Ykk∈K, X k L-pseudo-closed}.

1. For i ∈I

2. L=L\{X i →Yi } /drop it out /

3. Xi =L(X i) /see above Amendment 1/

4. If Y i .not. ⊆Xi Then

5. Yi =Xi ∪Yi /restore non-redundant/

6. L=L∪{X i →Yi } /possibly non-full implications/

7. Endif

8. Endfor

9. SORT L by lexicographic order on X i (i ∈I)

10. Basis= ∅ /namely: 00<01<10<11.../

11. For i ∈I

12. For (X k→Yk) ∈Basis /is X i L-pseudo-closed?/

13. If X k⊆Xi .and.X i .not. ⊃Yk Then

14. L=L\{X i →Yi } /no: drop it out /

15. Goto 20 /i.e. Endfor i/

16. Endif

17. Endfor

18. Yi =L(Y i) /yes: make X i →Yi full/

19. Basis=Basis ∪{X i →Yi }

20 Endfor

Remarks. As compared with Alan Day’s Algorithm 2, the only new idea is to
separate saturating the premises although keeping enough information from the
original implications (first loop), from detecting the L-pseudo-closed -by using their
recursive characterization (Lemma 2.3, which requires sorting L before, statement 9)-
and closing their conclusions (second loop). Even if this sorting and detection
(statements 12-17) have a cost, a major benefit is to L-close only the L-pseudo-closed
(statement 18), which will be more eff icient when L comprises far more implications
than L-pseudo-closed, by saving the deadly price of reiteration in calculating L(). This
algorithm can also be done in place by permuting L to avoid the extra table “Basis” .

8

Discussion.

Starting from an (a priori) non-full li st of implications L:={ Xi→Yii∈I, Xi⊂Yi⊆A}

for calculating its canonical basis BL:={ Xk→L(Xk)k∈K, Xk L-pseudo-closed} , any

algorithm will so far require I+K closures, unless a sparing-closure-test is
elaborated in the future to detect non-L-pseudo-closed premises at first sight...

Algorithm 1 requires I closures, but half the work is already embedded and was
supposed done by the fullness hypothesis, to be honest. Notice that in this note it is
the only procedure giving optionally at no memory cost a basis with the original
smaller premises -that may be crucial in some applications either for semantical
reasons (because the user care them) or for optimization (cost, minimal generators…).
L should usually shrink quickly during the reduction process since -in addition to
redundant implications- L-quasi-non-pseudo-closed are dropped out at first sight
thanks to fullness, which so doing provides a non order-dependent algorithm.

The best feature of Alan Day’s Algorithm 2 is to start with over-saturating
premises that drops out redundant implications of which the premise L-closure is not
essential, leading to I+K’ closures, K’∈[K,I], but is order dependent.

Algorithm 3 is a variation which requires exactly the optimal I+K closures,
after a pre-sorting -instead of post-sorting as for Alan’s-, with an extra I × loops in
the growing list to detect L-pseudo-closed premises, replacing iterative closures by
simple loops, which follows the popular advice: “better clean before you close”!

All three algorithms share two nice properties: they don’ t calculate L-saturation
actually -which would involve reiteration and presuppose the L-closure at hand- but
do a test leading “automatically” to pseudo / quasi-closed premises, and secondly the
reduction processes can be done in place, which is nice for building general programs.

In that respect, since the beginning of the development of our computer program
GLAD (General Lattice Analysis & Design, see [D83-96]), a main concern has not
been so much a pernickety fight against complexity, but to try understanding the
interplay between the representations of algebraic / structural objects in programs,
methodological questions ([D99]), and a search for simple / clearer algorithms. Alan’s
algorithm is very elegant and doesn’ t require sophisticated (often valued although
exponential…) constructions, even if Alan (or his hidden editor) was perhaps a bit
unfair when claiming that another alternative algorithm [NextClosure for implications
that starts from a “formal” context] “provides an excellent (though necessarily
exponential time) algorithm” [Day92 p.410]. Unfair, because … the input are not the
same! If one reduces something (a list) which is close to our current goal (a non-
redundant list), one is for sure in a better situation than wandering in the exponential
powerset of all potential premises even with clever shortcuts… In practice, both types
of algorithms are absolutely necessary depending on the context and applications.

Remaining questions for the future will be: Are there other ideas than fullness /
pre-sorting to optimize Alan Day’s algorithm? Combining different approaches and
tricks, will t here be other properties for identifying pseudo-closed premises quickly?
Is there any hidden algebraic property or tool that could drive their detection?

So far, the three algorithms that we focused on in this note give another discrete
clue on why / how pseudo-closed premises are hard to catch: as the ultimate survivors
among the original li st of candidates, may be they are just “ the veracious core of what
is left after throwing away the unnecessary gangue”, in an Hegelian spirit...

9

Acknowledgements
The writing of this note was postponed for many years due to a special emotion. Its
first motivation came out of discussions with Alan Day, along with his friends
Christian Herrmann, Douglas Pickering and Michael Roddy who brought me to
Thunder Bay -so scared and feeling such an amateur- in April 1990, a few months
before Alan’s untimely death. After open talks, accompanying us to his front door,
Alan told me with a grave smile “The only thing which is wrong is me: so, we don’ t
meet again” . I could not swallow and until today have not been able to utter a word.

Years afterwards, a first draft was at last prepared for the workshop “Le treilli s
Rochelais” , La Rochelle, May 2007, for which many thanks are due to the organizers.
Thanks are also due to the referees for their remarks aiming at clarifying this paper.

References

[B06] Bertet K., Some algorithmic aspects using the canonical direct implicational basis, in
CLA’06: Concept Lattices and their Applications (S. Ben Yahia and E. Mephu Nguifo eds),
Hammamet (2006) 101-114.

[Day92] Day A., The lattice theory of functional dependencies and Normal decompositions,
Intern. J. of Algebra and Computations 2 (4) (1992) 409-431.

[D84-87] Duquenne V., Contextual implications between attributes and some representation
properties for finite lattices. in Beitrage zur Begriffsanalyse, (B. Ganter, R. Wille and K.E.
Wolf eds), 1987, Mannheim: 213-239.

[D83-96] Duquenne V., GLAD (General Lattice Analysis & Design): a program for a glad
user, ORDAL 96: Order and decision-making (I. Rival ed.), Ottawa, www.csi.uottawa.ca.

[D99] Duquenne V., Latticial structures in Data Analysis, ORDAL 96: Order and decision-
making (I. Rival ed.), Ottawa,www.csi.uottawa.ca, Theo. Comp. Sci. 217 (1999) 407-436.

[D&Al01] Duquenne V., Chabert C., Cherfouh A, Delabar J.-M., Doyen A.-L, Pickering D.,
Structuration of phenotypes / genotypes through Galois lattices and implications, in Proc. of
ICCS2001-CLKDD'01 (Stanford 07/2001, E. Mephu Nguifo et al. eds) 21-32, and Applied
Artifi cial Intell igence 17 (2003) 243-256.

[G84-87] Ganter B., Algorithmen zur Formalen Begriffsanalyse in Beitrage zur
Begriffsanalyse, (B. Ganter, R. Wille and K.E. Wolf ed.), 1987, Mannheim: 213-239
(preprint TH Darmstadt, 1984).

[GW99] Ganter B., Will e R., Formal Concept Analysis, Mathematical Foundations.
Springer Verlag, Berlin, 1999.

[GD84-86] Guigues J.L., Duquenne.V., Famill es minimales d'implications informatives
résultant d'un tableau de données binaires. Mathématiques & Sciences Humaines 95 (1986) 5-
18, (preprint Groupe Mathématiques et Psychologie, Université Paris V, 1984).

[Ma83] Maier D., The theory of relational databases, Computer Science Press, 1983.
[O&D03-07] Obiedkov S., Duquenne V., Incremental construction of the canonical basis, in

JIM'2003 (M. Nadif, A. Napoli , E. SanJuan, A. Sigayret eds) 15-23, and accepted in Annals
of Mathematics and Artifi cial Intelligence 49 (2007) 77-99.

[R07] Rudolf S., Some notes on pseudo-closed sets, in ICFCA’07: Formal Concept Analysis
(S.O. Kuznetsov and S. Schmidt eds), Clermont-Ferrand (2007), LNAI 4390, 151-165.

[V&D03-07] Valtchev P., Duquenne V. Towards scalable divide-and-conquer methods for
computing concepts and implications, in JIM'2003 (M. Nadif, A. Napoli , E. SanJuan, A.
Sigayret eds) 2-12.

[W95] Wild M., Computations with finite closure systems and implications. In Proceedings of
the 1st Annual International Conference on Computing and Combi nator i cs, volume 959 of
LNCS, pages 111-120. Springer, 1995.

