Some variationson Alan Day’salgorithm for
calculating canonical basis of implications

Vincent Duquenne

CNRS-ECP®6, Université Pierre @ Marie Curie,
175 rue du Chevaleret, 75013 Paris, France
duguenne@math.jusseu.fr

Abstract. Two variations of an agorithm by Alan Day for reducing a list of
implications regarding redundancy are given, with a new simple justification.
All three dgorithms have the property that the list can be reduced in place -at
no extra memory cost- that will be useful for large gpli cations and databases.

Keywords: basis of implications, closure operator, reduction in place redundancy.

I ntroduction

Many yeas after having “introduced implicaion besis into FCA” (as noted in
[GW99 p94]) which dates badk to the fall of 1983 (see[GD84-86], [G84-87], [D84-
87)), it is aurprising if not hard to adknowledge that we didn’t lean a lot more on
“their intimagy” in the meantime, despite many interesting papers using a revisiting
them. In that resped, a spedal attention should be paid to one of the last papers by
Alan Day ([Day92]), who spent several months of his gare time to clarifying the
interest of Lattice Theory for putting databases into canonical forms, by decompasing
them through functional dependencies and relation schemes. This was linked with
other works (among which [W95]) that made predse the cnnedions with functional
dependencies ((MA83]) -classcd in databases and Al-, to the FCA community. More
recently we had ([D&AO01], [0&D03-07], [V&DO03-07]) to device some variations
around Alan’s algorithm and some pain to explain how they work which we now do.

Let A be a (finite) set of attributes, L:={X;- Y;0iOl, X;,Y;OA} be alist of
attribute impli cations, and let consider the two closure operators:

(1) L-closure, X|-L(X) for all XOA, that is defined by reiteration o

X'—:=XDD{YiDXquiDL,XiDX} up to reading a fixpoint (hence finiteness..),
namely L(X)::XL---L:(XL---L)L which isthe consequenceof X, and similarly,

(2) L-saturation X|—L°(X) for all XOA, L°(X):=xL°--L°=(xL°-L*)L° defined
by reiteration of XL°:=XOO{L(X{)0X; - Y;{OL, X;0X, L(Xj)ZL(X)}.
The L-saturation L°(X) is a restricted consequence of X for “what is aready known

for small er premisesthan X out of X’sL-closed class'. Noticehow it is a bit harder to
handl e since dependent of the L-closure due to the @ndition L(X;)ZL(X) that requires

to have L(X) at hand when cdculating L°(X) and will thus $ow down algorithms.



Animplicaionis full whenever its conclusionisL-closed, L itself is sid to be full
when L:={X; - L(Xj)00l, X;0A}, which could be taken as a strong hypathesis, but

isvery natural when theinput is a context. To avoid repeding X; - Y;0X; all the time
in the sequel, we dways suppase that L:={ X - Y;Lill, Xj,Y;UA} is such that X;0Y;

(i01) and sometimes that L is full, spedfying wherever results and algorithms can be
extended to families of non-full implicaions. We fredy mix together our original
terminology and denotations with more establi shed onesin FCA [GW99)].

Now, X=L°(X) is cdled L-saturated for short. A saturated subset L°(X) iscdled L-

guasi-closed when nat closed L°(X)#L(X) —some authors did differently...-, in which
case L(X) iscdled esential L-closed (or med-essential element of the n-semi-lattice
of L-closed subset, see [D84-87, D91]). L°(X) is cdled L-pseudo-closed when [I-
minimal L-quasi-closed in {YUOADOL(Y)=L(X)}. The set B :={X-L(X)OX L-
pseudo-closed} is cdled the canonical basis of L (saturated moreover, if necessary,

sometimes Guigues-Duqguenne basis or —a new comer- stem basisin FCA’sfolklore).
The main result in [GD84-86] states that B| is a minimal set of implicaions

inferring L -for usual propositional cdculus, or so-cdled Armstrong rules- and that
moreover any such minimal family isin one-one correspondence with B through a

natural construction, hence the name canonical saturated basis [D84-87 p.225] that
was first chosen. Many authors revisited these nations introducing their own
denctations. Here, we will not come badk on that, but focus on some properties of
quas / pseudo-closed subsets that shoud be extended for bettering the dgorithms.

It isnow part of the folklore (seethe &ove references) that:

Lemma 1 For alist L, a subset HOL defines the same dosure operator (has the same
set of consequences) as L iff H has the same canornicd basis as L iff for every L-
pseudo-closed X thereisat least one (X - Y;)OH for which X;OXOL (X)=H(X;).

It provided the charaderizations formulated in ealy drafts of [D84-87]:

Lemma 2 For a dosure operator L() on A (or alist L of implicaions...):

1. X=L°(X) iff L(X;)OX for al X;0A s. t. X;0X and L(X;)OL(X).

2. X=L°(X) iff L(X;)OX for al L-pseudo-closed X; s. t. X;jOX and L (X;)OL(X).
3. X is L-pseudo-closed or L-closed iff L(X;)0X for &l L-pseudo-closed X;0X.

Remark. (2) reduces (1) to L-pseudo-closed. (3) gives a reaursive definition of L-
pseudo-closed subsets, that [G84-87], [GW9I9] took as a starting cefinition instea.
Now when starting from allist of implications, it will be enoughto rewrite (1) as:

Lemma 3 For alist L:={X; - Y;0idl, X;0Y;0A}, X=L°(X)
iff L(Xj)OX for al (Xj - Y;{)OL such that X;0X and L(X;)OL(X).

Our aim is to complete these basic properties for deriving either the canonicd or
some abitrary basisof alist L, by dropping out redundant implicalionsone & atime.



Reducing lists of full implications

Lists of full implicaions will be somehow easier to ded with thanks to the simple:

Lemma 4 For a full list of implicaions L:={X;-Y;=L(X;)d0l, X;OY;0A},
(Xj-Y{)OL and H:=L\{ X - Y},
1 H(X£L(X;) iff
2. L°(X;) is L-pseudo-closed and there is no ather (X - Y )OL with L°(X)=L°(X;).
Proof. Since{ X - Y;0OL, X;0OX, L(X;)zL(X)} OHOL, noticethat

(*) for XOA with L(X)=L(X;), XOL°(X)OH(X)OL(X) holds.
Suppose (2) fails. Case 1: L°(X;) not-quasi-closed hence L-closed L°(Xj)=L(X;)
implies H(X;)=L(X;) by (*). Case 2: L°(X;) L-quasi-closed na pseudo-closed implies
the existence of a L-pseudo-closed Z with ZOL°(X;)0OL(Z)=L(X;), and by Lemma 1
the eistence of a least one (Xk-YKUOL with L°(XK)=Z so that
HOX)OL(XK)=L(X;) hence H(X;)=L(X;). Case 3: L°(X;) pseudo-closed and the
existence of some (Xk-Y)UOL with Xp#X; and L°(Xg)=L°(X;) implies
H(X;j)=H(X)=L(X;). Conversely, suppose that (2) hadds: since L°(X;) is L-quasi-
closed and minimal in its L-closed classfor this property, for any (X - Y)OL such
that XpOL°(X;), L(X)OL°(X;) must hold by Lemma 3, which implies
Le(Xj)=H(L°(X;)), so that by (*) it comes that X;OL°(X;)=H(L°(X;)OHH(X;)=
H(X;), hence H(X;)=L°(X;{)#L(X;), by isotony o H() and L°(X;j) is L-pseudo-closed.

Al gorithm 1.

Input a full family L:={X i »Y;=L(X;)d o, X Oy, DAL
Output: canonical basis B L:={X k- YkkOK, X  L-pseudo-
closed} (or an arbitrary one).

Fori Ol
L=LMX ; -Y;j} [/dropitout/
X=L(Xj) /see below Amendment 1/

L=LO{X -Y;j} /restore it when X i was the (last)/

1

2

3

4. IfX #Y; Then

5

6 Endif /generator of a pseudo-closed/
7. Endfor

We have used this algorithm in GLAD [D83-96] for yeas, spedally in preparing
[D&AIO0]], [O&D03-07], [V&D03-07]. It has been independently conceived in [RO7].



Remarks. The negation of Lemma 4 (1) provides a simple «iteria for dropping ou
redundant implications Xj—Y; in L: when H(X;)=L(X;). Notice that otherwise,
H(Xj)=L°(X;) is ® to say automaticaly delivered L-pseudo-closed thanks to full ness
Moreover, to get abasiswith smaller premisesreplace5 by (5  L=LO{X; -Y;}) .

The morality of this procedure is that L-pseudo-closed are generated by either their
single generator or last examined generator whenever several are existingin L, which
is another explanation -out of their recursive nature- for their difficulty to be readed.

A main feaure of this algorithm is that the reduction can be done in place The
priceisto suppase thelist L full, which takes ... full benefit of transitivity and kegps
tradks of impli cation consequences by isotony after they have been dropped ou. The
bonws are that the painful part (statement 3) reduces in time & implicaions are
dropped out. There is no post-processng to get the pseudo-closed and this can be used
to extrad a basis made of the original implications, while preserving the redundant
ones by permutation of L, separating L in two areas basis/ redundant implications.

Amendment 1. Statements 3-4 in Algorithm 1 can be replacal by the following:
3'. X=L-conditional(X i Y i .L,Restore)

4, If (Restore=true) Then

where L-conditional is a function that reiteratively caculates L(X;) but cances the
céculus as on as (if ever) the aiteria X=Y; is readied within the iterative loop
(returning Restore=false), and returns L(X;) otherwise (with Restore=true). As many

implicaions are redundant in pradice, this usually will savetime.

Hence, in any circumstances where L is naturally full or can be made full at small
price —which is quite often the cae in FCA when the input is a mntext- this will
avoid to céculate the L-saturation o the X;s by applying the definition and ceding

continuously with bah the painful restrictions L(Xy)#L(X;) and deadly reiteration.
Fullnessprovides the darity and efficiency of this Smple dgorithm.

Reducing non-full i mplications

Now, in the mntext of databases and Al, it may be the cae that dependencies are
expressed by non-full implicaions. For instance, seethe new developments in [BO6]
that promote canonical dired basis for which the L-closure / saturation donot require
reiteration, but are dways readed with asingle scan of the basisin construction.

For reducing such lists of implicaions ssme spedfic properties are required:
Lemma 5 Let L:={X;-Y;00, X;OY;0A} be a list, (X;-Y;)OL and
H:=L\{ Xj - Y}, suppacse moreover that H(X)OL (X) for some XUA, then:

1. XOXOX;O0XOY;0L(X) and L(X)OL(X;), and
2. H(X)OX;, and
3. H(X).not.OY; holds.



Proof. (1): H(X)OL(X) implies that X - Y; must take part in the iterative caculus of
L(X), so that XOXOX;OXOY;OL(X). By isotony and idempotence of L(), this
implies L(X)OL(XOX;)OL(L(X))=L(X), hence L(X)=L(XOX;)OL(X;) must hold.
(2): By cortrapasition. Since XUOH(X)OL(X) and L\H={X; - Y;} hdd, H(X).not.LIX;
implies H(X)=L(X), a ontradiction. (3): Similarly, H(X)OY;OX; implies
H(X)OX;=H(X)OY;, so that by contraposition d (1), H(H(X))=L(H(X)), but
H(H(X))=H(X) and L(H(X))=L(X), hence H(X)=L(X) shoud hold, a contradiction,
so that H(X).not.0Y; holds as asserted.

This $rodd be made alittl e bit more predse and gives some indications where the
premises XOA of nonredundant implicaions for which H(X)OL(X) are, a
potentiality that will be made deaer by the following:

Lemma 6. For alist L:={X; - Y;00l, X;0Y;0A}, (Xj - Y;)OL and H:=L\{ X; - Y},
1. either H(X;)TY;, in which case H(X;)=L(X;), H)=L() and Xj - Y is L-redundant,
2. or H(X;j).nat.0Yj, in which case H(Xj)OL(X;) and H(Xj)=L°(H(X;)) is L-quasi-
closed and X;OL°(Xj)OH(X;)=L°(H(X;))UL(X;) holds, that moreover collapses
L°(Xj)=H(Xj) whenever L°(X;) is L-pseudo-closed and there is no aher
(Xk = Y OL with L°(X)=L°(Xj) and Y .not.OL°(X;).

Proof. (1): H(X;)QY; implies H(X;)=L(X;) by contrapasition o Lemma 5.3. Suppcse
that there exists me XOA for which H(X)OL (X), this implies H(X)OX; by Lemma
5.2, hence H(X)OH(X;)=L(X;)QY; hods by isotony d H(), hence H(X)=L(X) by
contraposition o Lemma 5.3, a ntradiction, so that H()=L(), and X;-Y; is
therefore redundant in L. (2): Let H(Xj).not.0Y; holds. X;0Y;0L(X;) and
X;OHE)OL(X;) imply that HOX)=L(X;) implies H(X;)OY;, a contradiction, hence
H(X;)OL(X;) must hold. Suppose now that H(X;) is not L-quasi-closed. By Lemma 3
there must exist some (X - Y)OL for which X, OH(X;), L(Xk).not.OH(X;) and
such that LX) OL(HCX;)=L(X;). LOXKOL(X;) implies L(X)).not.0OL(X;), hence
H(X)=L(Xk), by contraposition d Lemma 5.1. By isotony and idempotence of H(),
XKOHEX;) implies X OHX)OHHX)=H(Xj), so that L(X)OH(X;), a
contradiction, H(X;) is thus L-quasi-closed. X;OL°(X;)OH(X;)0L(X;) follows from
(*) in Lemma 4's proof. Last, L°(X;) L-pseudo-closed and there is no aher
Xk = YOL with L°(X,)=L°(X;) and Y.not.OL°(Xj) implies L°(X;)=H(L°(X;)),
the @ove inequalities imply that X;0L°(Xj)=H(L°(X;))OH(X;)OL(X;) hold, but
Le(X;)OX; implies H(L°(X;))EH(X;) by isotony, so that H(X;)=L°(X;) must hald.



Remark. Lemma 6 (1) provides an efficient criteria for droppgng out most
redundant implications in L, and in particular all those (X; - Y;)OL with L(X;) not-
essential L-closed (of which the L-closed classes contain noL-quasi-closed subset).
Lemma 6 (2) guaranties that repladng X - Y;j in L by H(X;) - HH(X;)OY;)=L(X;)
gives an equivalent set of implicaions with a new premise H(X;) that is made
automaticdly L-quasi-closed, without having to cdculate any saturation actually.

Together with Lemma 1 and reiteration, this can be used to produce asuperset of
the canonicd basis, and provides a new simple justificaion d the dgorithm that is
given at the end of [Day92 p. 426], of which the original setting —-although focused on
functional dependencies- is ssmehow complex and quite dgebraic in nature, since it
is expressed with sophisticated constructions on semi-lattice ®nguencerelations:

Al gorithm 2. [Alan Day 1992 p.426]
Input a family L:={X i —»Y; 4o, X ;ay; DAL
Output: an equivalent set of implications
L:={X k- YkKOK, X i L-quasi-closed}.
Fori 0Ol
L=LM{X j =Y} /drop it out /

Xi =L(X) /see above Amendment 1/

Y =L(X; OY;) Irestore non-redundant/

L=LO{X; -Y;} /remade full implications/

Endif

1.

2

3

4. IfY j.not. 0OX; Then
5

6

7

8. Endfor

Remark. As observed by Alan Day, getting the canonicd basis (“critical” basisin
his own terms) out of this new amended list requires a post-processng to sort it and
chedk premises’ minimal property in their L-closed classes. Thisis due to the fad that
a nonminimal quasi-closed can be obtained and kept in the list while a smaller
pseudo-closed in the same L-closure dass makes it becoming redundant afterwards.
Hence, the reduction processis dependent of the order taken for scanning throughlL,

and there is no way to insure that quasi-closed are tested in a [1-compatible order.

However, a main advantage of this algorithm is to drop ou a lot of redundant
implicaions (statements 2-4), athough it canna deted the L-pseudo-closed sets on
the fly, that could be ahandicagp for red scde gplicdions and huge databases.

Thiscan be avoided by using their recursive charaderizaion in Lemma 2.3:



Al gorithm 3.
Input a family L:={X i —»Y; O, X ;ay; DAL

Output: basis B L:={X k- YkkOK, X  L-pseudo-closed}.

1 Fori Ol

2 L=LMX j =Y} /drop it out /

3 X =L(X{) /see above Amendment 1/

4 IfY j.not. 0OX; Then

5. Y; =X OY; Irestore non-redundant/

6 L=LO{X; -Y;j} [/possibly non-full implications/

7 Endif

8 Endfor

9. SORT L by lexicographic order on X i (i an

10. Basis= O /namely: 00<01<10<11.../

11. Fori Ol

12. For (X k- Yk) OBasis fis X j L-pseudo-closed?/
13. If X kOX;.and.X j.not. OY, Then

14. L=LM{X ; =Y} /no: drop it out /

15. Goto 20 /i.e. Endfor i/

16. Endif

17. Endfor

18. Y;=L(Y;) lyes: make X ; =Y full/

19. Basis=Basis O{X; -Y;j}
20 Endfor

Remarks. As compared with Alan Day’s Algorithm 2, the only new ideais to
separate saturating the premises athough leeging enough information from the
origina implicaions (first loop), from deteding the L-pseudo-closed -by using their
reaursive tharaderization (Lemma 2.3, which requires sorting L before, statement 9)-
and closing their conclusions (secnd loop). Even if this srting and detedion
(statements 12-17) have a cost, a major benefit isto L-close only the L-pseudo-closed
(statement 18), which will be more efficient when L comprises far more implications
than L-pseudo-closed, by saving the deadly priceof reiterationin cdculating L(). This
algorithm can aso be donein placeby permuting L to avoid the extratable “Basis’.



Discusson.

Starting from an (a priori) non-full li st of implicaions L:={X; - Y;00I, X;0Y;0A}
for cdculating its canonicd basis B| :={X| - L(X) KUK, Xy L-pseudo-closed}, any

algorithm will so far require OIHOKO closures, unless a sparing-closure-test is
elaborated in the future to deted non-L-pseudo-closed premises at first sight...

Algorithm 1 requires Ol closures, but half the work is already embedded and was
suppacsed done by the fullness hypothesis, to be honest. Notice that in this note it is
the only procedure giving ogionally a no memory cost a basis with the original
smaller premises -that may be crucial in some applications either for semanticd
reasons (because the user care them) or for optimization (cost, minimal generators...).
L shoud wsualy shrink quickly during the reduction process $nce -in addition to
redundant implications- L-quasi-non-pseudo-closed are dropped out at first sight
thanks to fullness which so doing provides a non ader-dependent algorithm.

The best feaure of Alan Day’s Algorithm 2 is to start with over-saturating
premises that drops out redundant implications of which the premise L-closure is not
essential, leading to Ol CHK’ [ closures, CK' OD[OKO,010], but is order dependent.

Algorithm 3 is a variation which requires exadly the optimal Ol (+OKO closures,
after a pre-sorting -insteal of post-sorting as for Alan’s-, with an extra I x loops in
the growing list to deted L-pseudo-closed premises, repladng iterative dosures by
simple loops, which foll ows the popular advice “better clean before you close”!

All three dgorithms dhare two nice properties: they don't cdculate L-saturation
adually -which would involve reiteration and presuppose the L-closure & hand- but
do atest leading “automaticdly” to pseudo/ quasi-closed premises, and secondly the
reduction processes can be dorein place which isnicefor building general programs.

In that resped, since the beginning d the development of our computer program
GLAD (General Lattice Analysis & Design, see[D83-96]), a main concern has not
been so much a pernickety fight against complexity, but to try understanding the
interplay between the representations of algebraic/ structural objeds in programs,
methoddogicd questions ([D99]), and aseach for simple / clearer algorithms. Alan’s
algorithm is very elegant and doesn't require sophisticaed (often valued athough
exporential...) constructions, even if Alan (or his hidden editor) was perhaps a bit
unfair when claiming that another alternative dgorithm [NextClosure for implications
that starts from a “formal” contex] “provides an excdlent (though necessarily
exporential time) algorithm” [Day92 p.410]. Unfair, because ... the input are not the
same! If one reduces omething (a list) which is close to ou current goal (a non-
redundant list), one is for sure in a better situation than wandering in the exporential
powerset of all potential premises even with clever shortcuts... In pradice, both types
of algorithms are absolutely necessary depending on the context and applicetions.

Remaining guestions for the future will be: Are there other ideas than fullness/
pre-sorting to optimize Alan Day’s algorithm? Combining different approaches and
tricks, will there be other properties for identifying pseudo-closed premises quickly?
Isthere any hidden algebraic property or tod that could drive their detedion?

So far, the three dgorithms that we focused onin this note give another discrete
clue onwhy / how pseudo-closed premises are hard to catch: as the ultimate survivors
amongthe original list of candidates, may be they are just “the veradous core of what
isleft after throwing away the unnecessary gangue”, in an Hegelian spirit...



Acknowledgements
The writing of this note was paostponed for many yeas due to a spedal emotion. Its
first motivation came out of discussons with Alan Day, along with his friends
Christian Herrmann, Douglas Pickering and Michad Roddy who brought me to
Thunder Bay -so scared and feding such an amateur- in April 1990, a few months
before Alan’s untimely deah. After open talks, accompanying ws to his front door,
Alan told me with a grave smile “The only thing which is wrongis me: so, we don’t
mee again”. | could not swallow and urtil today have naot been able to utter aword.
Yeas afterwards, a first draft was at last prepared for the workshop “Le treilli s
Rochelais’, La Rochelle, May 2007, for which many thanks are due to the organizers.
Thanks are dso due to the referees for their remarks aiming at clarifying this paper.

References

[BO6] Bertet K., Some dgorithmic aspeds using the caonicd dired implicdiona basis, in
CLA'06: Concept Lattices and their Applications (S. Ben Yahia and E. Mephu Nguifo eds),
Hammamet (2006 101-114.

[Day92] Day A., The lattice theory of functional dependencies and Norma decompasitions,
Intern. J. of Algebra and Computations 2 (4) (1992) 409-431.

[D84-87] Duquenne V., Contextua implicaions between attributes and some representation
properties for finite lattices. in Beitrage zur Begriffsanalyse, (B. Ganter, R. Wille and K.E.
Wolf eds), 1987, Mannheim: 213-239.

[D83-96] Duquenne V., GLAD (Genera Lattice Analysis & Design): a program for a glad
user, ORDAL 96: Order and dedsion-making (I. Rival ed.), Ottawa, www.csi.uottawa.ca
[D99] Duquenne V., Latticial structures in Data Analysis, ORDAL 96: Order and dedsion-
making (I. Rival ed.), Ottawa,www.csi.ucttawa.ca, Theo. Comp. Sci. 217 (1999) 407-436.
[D&AIOL] Duguenne V., Chabert C., Cherfouh A, Delabar J.-M., Doyen A.-L, Pickering D.,
Structuration of phenatypes/ genotypes through Galois lattices and implicaions, in Proc. of
ICCS201-CLKDD'01 (Stanford 07/2001, E. Mephu Nguifo et al. eds) 21-32, and Applied

Artificial Intelligence 17 (2003) 243-256.

[G84-87] Ganter B., Algorithmen zur Formaen Begriffsandyse in Beitrage zur
Begriffsanalyse, (B. Ganter, R. Wille and K.E. Wolf ed.), 1987, Mannheim: 213-239
(preprint TH Darmstadt, 1984).

[GW99] Ganter B., Wille R., Formal Concept Analysis, Mathematical Foundations.
Springer Verlag, Berlin, 1999.

[GD84-86] Guigues JL., DuquenneV., Familles minimales dimplicaions informatives
résultant d'un tableau de domées binaires. Mathématiques & Sciences Humaines 95 (1986 5
18 (preprint Groupe Mathématiqueset Psychdoge, UniverstéPaisV, 1989.

[Ma83] Maier D., Thetheory of relational databases, Computer Science Press 1983.

[0&D03-07] Obiedkov S., Duquenne V., Incrementa construction of the canonicd basis, in
JIM'2003(M. Nadif, A. Napoli, E. SanJuan, A. Sigayret eds) 15-23, and accepted in Annals
of Mathematics and Artificial Intelligence 49 (2007) 77-99.

[RO7] Rudolf S., Some notes on pseudo-closed sets, in ICFCA’07: Formal Concept Analysis
(S.0. Kuznetsov and S. Schmidt eds), Clermont-Ferrand (2007), LNAI 4390, 151-165.

[V&D03-07] Vadtchev P., Duquenne V. Towards sdable divide-and-conquer methods for
computing concepts and implicaions, in JIM'2003 (M. Nadif, A. Napoli, E. SanJuan, A.
Sigayret eds) 2-12.

[W95] Wild M., Computations with finite dosure systems and implications. In Procedings of
the 1st Annud Internationd Conference on Computing and Combinatorics, volume 959 of
LNCS, pages 111-120. Springer, 1995



