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Abstract. This paper presents a mathematization of the philosophical doc-

trine of judgments as an extension of the mathematization of the philo-
sophical doctrine of concepts developed in Formal Concept Analysis. The
chosen approach was strongly stimulated by J. F. Sowa’s theory of concep-

tual graphs. The mathematized conceptual graphs, called concept graphs, are
mathematical semantic structures based on formal contexts and their for-
mal concepts; those semantic structures are viewed as formal judgments in
the underlying Contextual Judgment Logic. In this paper concept graphs are
systematically built up starting with simple concept graphs in section 2 and
continuing with existential concept graphs in section 3, with implicational

and clausal concept graphs in section 4, and finally with generalizations of
concept graphs in section 5. Examples are illustrating the different types of
concept graphs.
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1 Semantic Structures for Contextual Judgment Logic

“Contextual Logic” has grown out of attemps to “restructure” lattice theory and
mathematical logic (see [Wi82], [Wi96], [Wi97], [Pr98]). These attempts were stim-
ulated by the german scholar Hartmut von Hentig with his charge to restructure
scientific disciplines which he explains as follows:

“The restructuring of scientific disciplines within themselves become more
and more necessary to make them better learnable, mutually available, and
criticizable in more general surroundings, also beyond disciplinary compe-
tence. This restructuring may and must be performed by general patterns
of perceptions, thought, and action of our civilization.” ([He74], p.33f.)
For this: “Sciences have to examine their disciplinarity, and this means: to
uncover their unconscious purposes, to declare their conscious purposes, to
select and to adjust their means according to those purposes, to explain
possible consequences comprehensibly and publicly, and to make accessible
their ways of scientific finding and their results by the every-day language.”
([He74], p.136f.)

Restructuring lattice theory has been started in 1979 by mathematizing concepts
and concept hierarchies which led to the notions of “formal context” and “concept
lattice” (see [Wi82]). A formal context was defined as a triple (G, M, I) where G is



a set, the elements of which are called “objects”, M is a set, the elements of which
are called “attributes”, and I ⊆ G × M is a binary relation for which (g, m) ∈ I
(also written: gIm) is read: “the object g has the attribute m”. A formal concept
of (G, M, I) was then defined as a pair (A, B) with A ⊆ G and B ⊆ M satisfying:

A = {g ∈ G | ∀m ∈ B : gIm}(=: B′) and B = {m ∈ M | ∀g ∈ A : gIm}(=: A′).

A and B are called the extent and the intent of the formal concept (A, B), re-
spectively. The set B(G, M, I) of all formal concepts of a given formal context
(G, M, I) carries an order relation ≤ defined by (A1, B1) ≤ (A2, B2) :⇔ A1 ⊆ A2

(⇔ B1 ⊇ B2) so that (B(G, M, I),≤) becomes a complete lattice, the so-called
concept lattice of (G, M, I) which is structured by the following

∧
−operation and∨

−operation:

∧

t∈T

(At, Bt) := (
⋂

t∈T

At, (
⋃

t∈T

Bt)
′′),

∨
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⋃
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′′,

⋂

t∈T

Bt).

A comprehensive introduction to the rich theory of concept lattices is presented in
the monograph “Formal Concept Analysis: Mathematical Foundation” [GW99a].

Restructuring mathematical logic has been started in the early 1990s and first
presented at the conference on “logic and algebra” held in Pontignano (Siena) in
April 1994 (see [Wi96]). The restructuring approach was based on the traditional
philosophical logic which is founded on “the three essential main functions of think-
ing - concepts, judgments, and conclusions” ([Ka88], p.6) and therefore, on the
elementary level, presented in three parts: the doctrine of concepts, the doctrine
of judgments, and the doctrine of conclusions. These doctrines are essential, since
human thinking is based on concepts as basic units of thought, on judgments as
assertional combinations of concepts, and on conclusions as entailments between
judgments. For mathematizing concepts, judgments, and conclusions, they shall be
primarily understood as semantic structures which are basic for logical thinking.

Mathematizing the doctrine of concepts, using a contextual approach, has been
already performed to a great extent in developing Formal Concept Analysis (cf.
[GW99a], in particular: [GW99b],[Wi00]),[Ga05]). Therefore, this paper continues
to present the mathematization of the doctrine of judgments which builds up a
Contextual Judgment Logic based on developments in Formal Concept Analysis (cf.
[Wi01],[Wi03]). The chosen approach was strongly stimulated by J. F. Sowa’s the-
ory of conceptual graphs [So84] since those graphs can be understood as semantic
structures which represent logical judgments. The mathematized conceptual graphs,
called concept graphs, are mathematical semantic structures based on formal con-
texts and their formal concepts (cf. [Wi97],[Wi02]); those semantic structures are
considered as formal judgments in the underlying Contextual Judgment Logic. How
concept graphs can be systematically introduced and analysed is described in the
next sections: simple concept graphs in section 2, existential concept graphs in sec-
tion 3, implicational and clausal concept graphs in section 4, and generalizations of
concept graphs, in particular concept graphs with local negations in section 5.

2 Simple Concept Graphs and Their Conceptual Contents

Each step of the presented development of concept graphs shall start with an exam-
ple of a judgment represented graphically by a conceptual graph as standardized by
John Sowa (cf. [So92]). Those judgments are deduced from the following statement
written by Charles S. Peirce ([Pe92], p.114):

“Mathematics ... is the only one of the sciences which does not concern itself
to inquire what the actual facts are, but studies hypotheses exclusively.”
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To obtain an example of a simple conceptual graph, we consider the judgment: “The
science mathematics studies the hypothesis 2ℵ0 = ℵ1” (called “continuum hypoth-
esis”). This judgment may be represented by the simple conceptual graph shown
in Fig. 1. In that graph, “science” and “hypothesis” name concepts, while “mathe-
matics” and “2ℵ0 = ℵ1” name objects which fall under the concepts “science” and
“hypothesis”, respectively; furthermore, the relational concept “study” links the
science “mathematics” with the hypothesis “2ℵ0 = ℵ1”.

science: mathematics hypothesis: 2ℵ0 = ℵ1
study!"

#$

Fig. 1. Example of a simple conceptual graph

The example shows that judgments may join plain concepts with relational con-
cepts so that a mathematization of judgments has to offer besides formal concepts
also “relation concepts”. How this has been performed and further developed shall
be explained in the rest of this section (cf. [Wi04], pp. 53 – 55).

A power context family is a sequence !K := (K0, K1, K2, . . .) of formal contexts
Kk := (Gk, Mk, Ik) with Gk ⊆ (G0)k for k = 1, 2, . . .. The formal concepts of Kk

with k = 1, 2, . . . are called relation concepts, because they represent k-ary relations
on the object set G0 by their extents.

A relational graph is a structure (V, E, ν) consisting of two disjoint sets V and
E together with a map ν : E →

⋃
k=1,2,... V

k; the elements of V and E are called
vertices and edges, respectively, and ν(e) = (v1, . . . , vk) is read: v1, . . . , vk are the
adjacent vertices of the k-ary edge e (|e| := k is the arity of e; the arity of a vertex is
defined to be 0). Let E(k) be the set of all elements of V ∪E of arity k (k = 0, 1, 2, . . .).

A simple concept graph of a power context family !K := (K0, K1, K2, . . .) with
Kk := (Gk, Mk, Ik) for k = 0, 1, 2, . . . is a structure G := (V, E, ν, κ, ρ) for which

- (V, E, ν) is a relational graph,
- κ: V ∪ E →

⋃
k=0,1,2,... B(Kk) is a mapping such that κ(u) ∈ B(Kk) for all

u ∈ E(k),
- ρ: V → P(G0)\{∅} is a mapping such that ρ(v) ⊆ Ext(κ(v)) for all v ∈ V

and, furthermore, ρ(v1) × · · · × ρ(vk) ⊆ Ext(κ(e)) for all e ∈ E with ν(e) =
(v1, . . . , vk);

- in general, Ext(c) denotes the extent of the formal concept c.

It is convenient to consider the mapping ρ not only on vertices but also on edges:
for all e ∈ E with ν(e) = (v1, . . . , vk), let ρ(e) := ρ(v1) × · · · × ρ(vk).

A subgraph of a concept graph G := (V, E, ν, κ, ρ) is a concept graph Gs :=
(Vs, Es, νs, κs, ρs) for which Vs ⊆ V , Es ⊆ E, νs = ν|Es

, κs = κ|Vs∪Es
, and ρs =

ρ|Vs
. The union and intersection of subgraphs Gt := (Vt, Et, νt, κt, ρt) (t ∈ T ) of a

concept graph G := (V, E, ν, κ, ρ) are defined by
⋃

t∈T

Gt := (
⋃

t∈T

Vt,
⋃

t∈T

Et,
⋃

t∈T

νt,
⋃

t∈T

κt,
⋃

t∈T

ρt),

⋂

t∈T

Gt := (
⋂

t∈T

Vt,
⋂

t∈T

Et,
⋂

t∈T

νt,
⋂

t∈T

κt,
⋂

t∈T

ρt).

Lemma 1 The union and intersection of subgraphs of a concept graph G is always
a subgraph of G again.
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From the background knowledge coded in a power context family !K, two types
of material inferences shall be made formally explicit: Let k = 0, 1, 2, . . .;

1. object implications: for A, C ⊆ Gk, Kk satisfies
A → C if AIk ⊆ CIk and,

2. concept implications: for B, D ⊆ B(Kk), Kk satisfies B → D if
∧

B ≤
∧

D.

The formal implications A → C and B → D give rise to a closure system C(Kk)
on Simp(Kk) := {(g, b) ∈ Gk × B(Kk) | g ∈ Ext(b)} consisting of all subsets Y of
Simp(Kk) which have the following property:

(Pk) If A × B ⊆ Y and if Kk satifies A → C and B → D then C × D ⊆ Y.

For k = 1, 2, . . ., the Kk-conceptual content Ck(G) of a concept graph G :=
(V, E, ν, κ, ρ) of a power context family !K is defined as the closure of

{(!g, κ(e)) | e ∈ E(k) and !g ∈ ρ(e)}

with respect to the closure system C(Kk);
the K0-conceptual content C0(G) of G is defined as the closure of

{(g, κ(v)) | v ∈ V and g ∈ ρ(v)}∪
{(gi, (G0, G

I0
0 )) | ∃((g1, . . . , gk), c) ∈ Ck(G) with gi ∈ {g1, . . . , gk}}

with respect to the closure system C(K0). Then

C(G) := C0(G) ∪̇C1(G) ∪̇C2(G) ∪̇ . . .

is called the (!K-)conceptual content of the concept graph G.
The defined conceptual contents give rise to an information (quasi-) order <

∼

on the set of all concept graphs of a power context family: A concept graph G1 :=
(V1, E1, ν1, κ1, ρ1) is said to be less informative (more general) than a concept graph
G2 := (V2, E2, ν2, κ2, ρ2) (in symbols: G1

<
∼ G2) if

Ck(G1) ⊆ Ck(G2) for k = 0, 1, 2, . . . ;

G1 and G2 are called equivalent (in symbols: G1 ∼ G2) if G1
<
∼ G2 and G2

<
∼ G1

(i.e., Ck(G1) = Ck(G2) for k = 0, 1, 2, . . .). The set of all equivalence classes of
concept graphs of a power context family !K together with the order induced by the
quasi-order <

∼ is a complete lattice denoted by Γ̃ (!K).

3 Existential Concept Graphs
and Their Conceptual Contents

To obtain an example of an existential conceptual graph, we modify the judgment of
section 2 as follows: “The science mathematics studies hypotheses”. Logically equiv-
alent is the judgment: “There exists at least one hypothesis studied by the science
of mathematics”. This judgment may be represented by the existential conceptual
graph shown in Fig. 2.

The example shows that judgments may embody existentially quantified vari-
ables which are usually indicated by letters like x, y, z (sometimes they are re-
placed by a so-called “coreference link”). The mathematization of existential con-
ceptual graphs whose variables are from a variable set X can be based on “free
X-extensions” of a power context family. Such mathematization generalizes the ap-
proach of section 2 so that it becomes a wider range of applications (cf. [Wi04], pp.
55 – 57).

4



science: mathematics hypothesis: xstudy!"
#$

Fig. 2. Example of an existential conceptual graph

For a set X of variables, an X-interpretation into a set G0 with G0 ∩ X = ∅ is
defined as a mapping χ : G0∪X → G0 with χ(g) = g for all g ∈ G0; the set of all X-
interpretations into G0 is denoted by B(X, G0). The free X-extension of the power
context family !K := (K0, K1, K2, . . .) with Kk := (Gk, Mk, Ik) for k = 0, 1, 2, . . . and
G0∩X = ∅ is defined as a power context family !K[X ] := (K0[X ], K1[X ], K2[X ], . . .)
for which

– K0[X ] := (G0[X ], M0[X ], I0[X ]) with G0[X ] := G0 ∪ X ,
M0[X ] := M0, I0[X ] := I0 ∪ (X × {m ∈ M0 | {m}I0 0= ∅}),

– Kk[X ] := (Gk[X ], Mk[X ], Ik[X ]) (k = 1, 2, . . .) with
Gk[X ] := {(u1, . . . , uk) ∈ G0[X ]k|∃χ ∈ B(X, G0) : (χ(u1), . . . , χ(uk)) ∈ Gk},
Mk[X ] := Mk, and
(u1, . . . , uk)Ik[X ]m : ⇐⇒ ∃χ ∈ B(X, G0) : (χ(u1), . . . , χ(uk))Ikm.

!K[X ] is called an existential power context family.
For defining existential concept graphs, the surjective

∧
-homomorphisms

πX
k : B(Kk[X ]) → B(Kk) (k = 0, 1, 2, . . .) are needed which are determined by

πX
k (A, B) := (A ∩ Gk, (A ∩ Gk)Ik) for (A, B) ∈ B(Kk[X ]).

An existential concept graph of a power context family !K is defined as a concept
graph G := (V, E, ν, κ, ρ) of a free X-extension !K[X ] for which an X-interpretation
χ into G0 exists such that Gχ := (V, E, ν, κχ, ρχ) with κχ(u) := πX

k (κ(u)) and

ρχ(v) := χ(ρ(v)) is a concept graph of !K; χ is then called an X-interpretation
admissible on G. For a fixed variable set X , G is more precisely named an existential
concept graph of !K over X .

Lemma 2 The subgraphs of an existential concept graph over X are existential
concept graphs over X, too.

The conceptual content of an existential concept graph GX of a power context
family !K is defined as the conceptual content of GX understood as a concept graph
of the free X-extension !K[X ]. To clarify this, it is helpful to show how variables
give rise to object implications of the relational contexts Kk[X ] as indicated in the
following lemma:

Lemma 3 Let Kk[X ] := (Gk[X ], Mk[X ], Ik[X ]) with k ∈ {1, 2, . . .} be a relational

context of an existential power context family !K[X ]; furthermore, let α be a map of
G0 ∪ X into itself satisfying α(g) = g for all g ∈ G0. Then Kk[X ] has the object
implications {(α(u1), . . . , α(uk))} −→ {(u1, . . . , uk)} with u1, . . . , uk ∈ G0 ∪ X.

For a permutation π of the variable set X , let απ be the map of G0 ∪ X into
itself with απ(g) = g for all g ∈ G0 and απ(x) = π(x) for all x ∈ X . Then
we obtain the object implication {(απ(u1), . . . , απ(uk))} −→ {(u1, . . . , uk)} with
u1, . . . , uk ∈ G0 ∪ X . Together with the corresponding object implication for π−1,
this yields that changing variables according to a permutation of X in a (k-ary)
object of Kk[X ] does not change the intension of that object.

An existential concept graph G1 := (V1, E1, ν1, κ1, ρ1) is said to be less in-
formative (more general) than G2 := (V2, E2, ν2, κ2, ρ2) (in symbols: G1

<
∼ G2) if
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Ck(G1) ⊆ Ck(G2) for k = 0, 1, 2, . . .; G1 and G2 are called equivalent (in symbols:
G1 ∼ G2) if G1

<
∼ G2 and G2

<
∼ G1 (i.e., Ck(G1) = Ck(G2) for k = 0, 1, 2, . . .). The

set of all equivalence classes of existential concept graphs of a power context family
!K over a fixed set X of variables together with the order induced by the quasi-order
<
∼ is an ordered set denoted by Γ̃ (!K; X).

4 Implicational and Causal Concept Graphs

For representing exactly Peirce’s judgment “mathematics studies hypotheses exclu-
sively”, we have to generalize existential conceptual graphs further to implicational
conceptual graphs. This becomes clear when we consider an equivalent formulation
of Peirce’s judgment, namely: “If mathematics studies a proposition then mathe-
matics studies a hypothesis”. A representation of this judgment by an implicational
conceptual graph is pictured in Fig. 3.

science: mathematics proposition: xstudy

science: mathematics hypothesis: xstudy

if:

then:

!"
#$

!"
#$

!!""

Fig. 3. Example of an implicational conceptual graph

The example shows an implicational judgment in which the premise and the
conclusion contain the same variable x; this indicates that the proposition x is, more
precisely, a hypothesis. The mathematization of implicational conceptual graphs
who are composed by two subgraphs representing a premise and a corresponding
conclusion, respectively, can be viewed as a generalization of existential concept
graphs (cf. [Wi04], pp. 57 – 59).

An implicational concept graph of a power context family !K is defined as an
existential concept graph G := (V, E, ν, κ, ρ) of !K over a variable set X with a
designated pair (pG, cG) of subgraphs such that

1. G is the union of pG and cG, and
2. each X-interpretation admissible on pG is also admissible on cG (and hence on

G too).

pG → cG may be written instead of G; the subgraphs pG and cG are called the
premise and the conclusion, resp.

For an existential concept graph G of a power context family !K over a variable
set X , the formal context K(X ; G) := (B(X, G0), Sub(G), !) is defined where

– the object set B(X, G0) consists of all X-interpretations into the object set G0

of the formal context K0 in !K,
– the attribute set Sub(G) is the set of all subgraphs of G,
– χ!G means that the X-interpretation χ is admissible on the subgraph G of G.
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Proposition 1 {Gs | s ∈ S} → {Gt | t ∈ T } is an attribute implication of K(X ; G)
if and only if

⋃
s∈S Gs →

⋃
t∈T Gt is an implicational concept graph of !K over X.

Proposition 2 K(X ; G) := (B(X, G0), Sub(G), !) is always a formal context of
which all extents are non-empty attribute extents. Conversely, let K := (G, M, I)
be a clarified formal context of which all extents are non-empty attribute extents;
then K is isomorphic to the clarified context of the formal context K({x}; G) :=
(B({x}, G), Sub(G), !) where G := (V, E, ν, κ, ρ) is the existential concept graph

of the power context family !K := (K) over {x} with V := M , E := ∅, ν := ∅,
κ(m) := µm, and ρ(m) := {x}.

Corollary 1 The concept lattices B(K(X ; G)) are up to isomorphism the concept
lattices of formal contexts.

Implicational conceptual graphs can even be generalized to clausal conceptual
graphs in which the conclusion consists of a disjunction of propositions (cf. [Wi04],
pp. 59 – 60). An example of a clausal conceptual graph is shown in Fig. 4.

science: x proposition: ystudy

science: x actual facts: ystudy

science: x hypothesis: ystudy

if:

then:

or:

!"
#$

!"
#$

!"
#$

!!""

Fig. 4. Example of a clausal conceptual graph

A clausal concept graph of a power context family !K is defined as an existential
concept graph G := (V, E, ν, κ, ρ) of !K over a variable set X with a designated pair
(pG, {ctG | t ∈ T }) consisting of a subgraph pG of G and a set {ctG | t ∈ T } of
subgraphs of G such that

1. G is the union of pG and all the ctG with t ∈ T , and
2. each X-interpretation admissible on pG is also admissible on at least one ctG

with t ∈ T .

pG →
∨

t∈T ctG may be written instead of G; the subgraphs pG and ctG (t ∈ T )
are called the premise and the disjunctive conclusions, resp. For subsets A and B
of the attribute set M ,

∧
A →

∨
B is an attribute clause of K if g ∈ AI always

implies gIm for at least one m ∈ B.

Proposition 3 Let G be an existential concept graph of a power context family
!K over a variable set X and let Gs (s ∈ S) and Gt (t ∈ T ) be subgraphs of G.
Then

∧
{Gs | s ∈ S} →

∨
{Gt | t ∈ T } is an attribute clause of the formal context

K(X ; G) if and only if
⋃

s∈S Gs →
∨

t∈T Gt is a clausal concept graph of !K over X.
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Proposition 2 and 3 show that the theory of clausal concept graphs is essentially
equivalent to the theory of attribute clauses of formal contexts. The advantage of
this equivalence is that many results about attribute clauses can be transferred
to clausal concept graphs which substantially enriches the research on Contextual
Judgment Logic.

Corollary 2 G∅ →
∨

t∈T Gt is a clausal concept graph of !K over X if and only if
for all X-interpretations χ into G0 there exists a tχ ∈ T such that χ is admissible
on Gtχ

.

5 Generalizations of concept graphs

Concepts and concept graphs form a comprehensive core for a semantics of Con-
textual Logic. Although such a semantics offers a great variety of support for logical
thinking, there is still the desire to use further conceptual structures. Here only two
types of such structures shall be discussed briefly so that readers get at least an
idea about the richness which still has to be explored.

As a first type of generalized graphs we want to consider conceptual graphs
with local negation. For this, we start again with an example deduced from Peirce’s
statement cited at the beginning of section 2; the example is shown in Fig. 5 which
presents an implicational conceptual graph with local negation. The diagram can

science: x | actual facts: y |study

science: x | science: mathematics |equal| |

if:

then:

!"
#$

!"
#$

!!""

Fig. 5. Example of an implicational conceptual graph with local negation

be read: “If a science studies actual facts then this science is not mathematics”
or ”mathematics is a science which does not study actual facts”. The additional
vertical strokes which divide the spaces after the colon in the rectangular boxes
allow to represent the negation of the object-concept-relation (see [Wi02]). The
vertical strokes cutting the horizontal lines joining the rectangular boxes with the
equal-circle indicate the negation of the relation “equal”; such localization means
that “x is not mathematics”.

Graphs with local negation have been introduced as “protoconcept graphs” in
[Wi02]. An extensive elaboration of the logic system of those protoconcept graphs
with their syntax and semantics can be found in [Kl05]. The logic system of concept
graphs with negation (and its relationship to predicate logic) which can be under-
stood as a mathematization of a large fragment of Sowa’s theory of conceptual
graphs, has been impressively worked out and published in the Springer Lecture
Notes in Artificial Intelligence [Da03].

As a second type of generalized graphs we want to mention conceptual graphs
with a modal component. Nested conceptual graphs may be understood to have a
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modal component. This becomes clear through a mathematical representation of
nested conceptual graphs by triadic concept graphs which have been invented in
[Wi98]. The discussion in that paper clarifies that one should consider not only
nestings, but also subdivisions with overlappings. As an example for this, a triadic
concept graph is shown which represents a diatonic modulation from C-major to A-
major with its constitutive chord overlappings. Triadic concept graphs are based on
a triadic power context family !K := (K0, K1, K2, . . .) with Kk := (Gk, Mk, B, Ik) and
Gk ⊆ Gk

0 (k = 0, 1, 2, ...) where B is always a set of modalities. It can be shown that
the triadic concept graphs of a triadic power context family always form a complete
lattice with respect to the generalization order. It turns out that the generalization
order may be differently defined, depending on the assumed background knowledge,
respectively (cf. [GW00]).

A concept graph with subdivision is a mathematical structure derived from a tri-
adic power context family. The aim of introducing concept graphs with subdivision
is to represent modal information mathematically. This has been demonstrated in
[SW03] by an example, namely by a comparison of the two famous paintings: the
“Darmstädter Madonna” and the “Dresdner Madonna”. Based on the notion of a
conceptual content, the concept graphs with subdivision of a triadic power context
family has been proved to form a complete lattice with respect to the information
order (cf. [SW03]).

Finally, it shall be pointed out that a conceptual theory and methodology of se-
mantic structures, named “semantology”, are under development from which the
theory and practice of concept graphs and their generalizations, and therefore of
Contextual Judgment Logic could benifit. The initial paper [GW06] discusses, from
the view of Peirce’s classification of sciences, a three-fold semantics of conceptual
knowledge: the mathematical, the philosophical and an application-oriented seman-
tics. Examples from Formal Concept Analysis are considered. The second paper
[EW07] extends the discussion of the three-fold semantics to Conceptual Knowledge
Processing by using the extensive analysis of methods in Formal Concept Analysis
and Contextual Logic presented in [Wi06]. A special case-study about applications
of semantology in music is offered in [WW07]. For understanding how mathemati-
cal methods can be applied in the real world, the relationship between mathematics
and concept analysis is analysed in [Wi07], in particular by the three-fold semantics
of concept analysis in Conceptual Knowledge Representation.
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