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Abstract. We continue in the direction of the ideas from Zhang’s pa-
per [12] about a relationship between Chu spaces and Formal Concept
Analysis. We modify this categorial point of view at a classical concept
lattice to a generalized concept lattice (in the sense of [7]): We define
generalized Chu spaces and show that together with (a special type of)
their morphisms form a category. Moreover we define some interesting
mappings and point on the commutativity of some diagrams of their
compositions.

1 Motivation

It is often very useful and inspirative to see the same thing from more different
points of view. This general sentence we can applied to Formal Concept Analy-
sis. Guo-Quiang Zhang in this paper [12] have considered a concept lattice in the
terms of the category theory. As he says, his paper brings these (originally inde-
pendent) areas together and establishes fundamental connections among them,
leaving open opportunities for the exploration of cross-disciplinary influences.
He emphasizes the substantial culture differences among these fields: Formal
Concept Analysis focuses on internal properties of and algorithms for concept
structures almost exclusively on an individual basis, while the Category Theory
mandates that concept structures should be looked at collectively as a whole
with appropriate morphisms relating one individual structure to another. (Note
that Zhang speaks about the third area, Domain Theory, too, but we will not
focus on this part of his considerations.)

We will continue in this direction of research. In the papers [7] and [8] we
define a new type of fuzzification of Formal Concept Analysis, a so-called gen-
eralized concept lattice, which moreover in some sense generalizes some other
fuzzy constructions of concept lattices (namely a fuzzy concept lattice, an one-
sided concept lattice and a concept lattice with hedges, all mentioned below).
A natural questions arise: If a notion of Chu space is a pendant of a classical
(crisp, Ganter & Wille’s) concept lattice in the category theory, what object
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will be a categorial counterpart of this generalized concept lattice? And what
about morphisms of such objects? We will try to answer to the first question
and partially answer to the second one in this paper.

Proofs of all lemmas are omitted because of lack of space.

2 Concept lattices and Chu spaces

By a Chu space ([12]) we understand a triple (A,B, R), where A is a (non-empty)
set of attributes, B is a (non-empty) set of objects, and R is a subset of A×B.

It is easy to see that a notion of Chu space corresponds to a notion of context
leading to a classical concept lattice ([6]): For a Chu space (A,B,R) define the
following mappings ↑: P(B) → P(A) and ↓: P(A) → P(B):

If X ⊆ B and Y ⊆ A then

X↑ = {a ∈ A : (∀b ∈ X)〈a, b〉 ∈ R},

Y ↓ = {b ∈ B : (∀a ∈ Y )〈a, b〉 ∈ R}.

These two mappings form Galois connection. By concept we understand a pair
〈X, Y 〉 such that X↑ = Y and Y ↓ = X. The set of all concepts is called a concept
lattice. It is proven (in the basic book [6]) that it is really a lattice (moreover
complete).

Theorems on one single Chu space / concept lattice are rather static, they
describe status quo of it. But it is often inspirative to see things dynamically. In
this case we can want to ask how concepts will changed if a new object is added
to context. The following notion brings dynamics to such considerations:

By a Chu mapping from a Chu space (A1, B1, R1) to a Chu space (A2, B2, R2)
we will understand a pair of functions 〈p, q〉 with p : A2 → A1 and q : B1 →
B2 (note that indices are interchanged in p) satisfying 〈p(a2), b1〉 ∈ R2 iff
〈a2, q(b1)〉 ∈ R1 for all a2 ∈ A2 and b1 ∈ B1.

In this framework an adding of new row to a table means the change from
one Chu space to another. This construction induces a Chu mapping 〈p, q〉 from
the initial Chu space to the enlarged one such that p and q are identities.

It is easy to see that all Chu spaces and Chu mappings as their morphisms
form a category.

3 L-liftings

In the next sections we will need this L-fuzzification of the image and the inverse
image of a set:

Let L will be (the support of) a complete lattice, S and T be arbitrary sets
and h : S → T . Then define the canonical L-liftings h+

L : LS → LT (forward
L-image) and h−

L : LT → LS (inverse L-image) in the following way:

– If g : S → L then h+
L(g) : T → L is defined by the formula

h+
L(g)(t) = sup{g(s) : h(s) = t}.
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– If f : T → L then h−
L (f) : S → L is defined by the formula

h−
L (f)(s) = (h ◦ f)(s) = f(h(s))

(i.e. h−
L (f) = h ◦ f).

In the special case L = {0, 1} we really obtain the coincidence between h[X]
and h+

L(χX) (or loosely h+
L(X) ≈ h[X]) and between h−1[Y ] and h−

L (χY ) (or
loosely h−

L (Y ) ≈ h−1[Y ]), namely:

Lemma 1.

h+
{0,1}(χX) = χh[X]

for arbitrary X ⊆ S, i.e. χX : S → {0, 1}.

Lemma 2.

h−
{0,1}(χY ) = χh−1[Y ]

for arbitrary Y ⊆ T , i.e. χY : T → {0, 1}.

The compositions of our liftings h+
L ◦ h−

L : LS → LS and h−
L ◦ h+

L : LT → LT

fulfills these interesting properties:

Lemma 3. a1) (h+
L ◦ h−

L )(g) ≥ g (pointwise) for all g : S → L.
a2) h+

L ◦ h−
L is the identity on LS iff h is an injection.

a3) (h+
L ◦ h−

L )(g) = (h+
L ◦ h−

L ) ◦ (h+
L ◦ h−

L )(g) for all g : S → L.
a4) If g1 ≤ g2 (pointwise) then (h+

L ◦h−
L )(g1) ≤ (h+

L ◦h−
L )(g2) for all g1, g2 : S →

L.
b1) (h−

L ◦ h+
L)(f) ≤ f for all f : T → L.

b2) h−
L ◦ h+

L is the identity on LT iff h is a surjection.
b3) (h−

L ◦ h+
L)(g) = (h−

L ◦ h+
L) ◦ (h−

L ◦ h+
L)(f) for all f : T → L.

b4) If f1 ≤ f2 (pointwise) then (h−
L ◦h+

L)(f1) ≤ (h−
L ◦h+

L)(f2) for all f1, f2 : T →
L.

We can summarize properties 1), 3) and 4) (a kernel operator is the dual
notion to a closure operator):

Corrolary 1 a) h+
L ◦ h−

L is a closure operator.
b) h−

L ◦ h+
L is a kernel operator.

4 A generalized concept lattice

An idea of defining of a generalized concept lattice arose as an answer to the
natural question of looking for a common platform for so far known fuzzifications
of a classical crisp concept lattice.

Let us recall its definition and basic properties ([7]):
Let P be a poset, C and D be complete lattices. Let • : C×D → P be isotone

and left-continuous in both their arguments. Let A and B be non-empty sets
and let R be P -fuzzy relation on their Cartesian product, i.e. R : A × B → P .
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Define the following mapping ↑: DB → CA:
If g : B → D then ↑ (g) : A → C is defined in the following way:

↑ (g)(a) = sup{c ∈ C : (∀b ∈ B)c • g(b) ≤ R(a, b)}.

Symmetrically we define the mapping ↓: CA → DB :
If f : A → C then ↓ (f) : B → D is defined in the following way:

↓ (f)(b) = sup{d ∈ D : (∀a ∈ A)f(a) • d ≤ R(a, b)}.

Mappings ↓ and ↑ form a Galois connection, i.e.

1a) g1 ≤ g2 implies ↑ (g1) ≥↑ (g2).
1b) f1 ≤ f2 implies ↓ (f1) ≥↓ (f2).
2a) g ≤↓ (↑ (g)).
2b) f ≤↑ (↓ (f)).

Then the pair of functions 〈g, f〉 from DB × CA such that g↑ = f and
f↓ = g, is called a (generalized) concept. If 〈g1, f1〉 and 〈g2, f2〉 are concepts,
we will write 〈g1, f1〉 ≤ 〈g2, f2〉 iff g1 ≤ g2 (or equivalently f1 ≥ f2). The set
of all such concepts with the order ≤ is called a (generalized) concept lattice
and denoted by GCL(A,B,R, C,D, P, •). The appropriate analogy of the Basic
Theorem on Concept Lattice can be formulated about it, it is proven in [7] and
[8].

This construction is really a generalization of known fuzzifications of concept
lattice. For Pollandt’s ([11]) and Bělohlávek’s ([1], [2]) fuzzy concept lattice we
have C = D = P = L and • is the product, for an one-sided fuzzy concept
lattice ([5], [10], [3]) C = P = [0, 1] but D = {0, 1} and • is the minimum (or
the product again).

Note that this notion is not the only common platform for notions of an one-
sided fuzzy concept lattice and of a fuzzy concept lattice. The alternative answer
is the approach given by Bělohlávek et al. ([4]) again. They define a so-called
concept lattice with hedges. In the paper [9] we show that this construction can
be understood as a special case of a generalized concept lattice.

5 A generalized Chu space

Now we will try to express these ideas by means of the category theory. We
define a notion of generalized Chu space what will be a pendant of a generalized
concept lattice.

Let A and B be non-empty sets, P be (the support of) a poset, C and D
be (the supports of) complete lattices and • : C × D → P be isotone and
left-continuous in both its arguments. By a generalized Chu space it will be
understood the tuple (A,B, R, P,C,D, •).

It is easy to see that an ordinary Chu space can be seen as a special case of
a generalized Chu space (A,B, R′) for P = {0, 1} where R is the characteristic
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function of the relation R′, i.e.

R(a, b) =

{

1, if 〈a, b〉 ∈ R′,

0, if 〈a, b〉 /∈ R′,

C = D = {0, 1} (a set is identified with its characteristic function) and • is the
product.

For a generalized Chu space (A,B,R, P,C,D, •) we can again define functions
↑: DB → CA and ↓: CA → DB in the same way as before. Hence it is easy to
see that the generalized Chu space (A,B,R, P,C,D, •) naturally leads to the
corresponding generalized concept lattice GCL(A,B,R, P,C,D, •).

If we want to speak about some category, we should say something about its
morphisms. In our case of generalized Chu space which will be objects of our
category we can imagine more types of such morphisms. For simplicity (as a
beginning of this approach) we will focus to morphisms which work only with a
fixed C, D, P and • of generalized Chu spaces (A,B,R, P,C,D, •):

Let (A1, B1, R1, P, C, D, •) and (A2, B2, R2, P, C, D, •) be generalized Chu
spaces (note that C, D, P and • are the same for both). Let p : A2 → A1 and
q : B1 → B2 (note the mutually inverse directions again) are such that

R2(a2, q(b1)) = R1(p(a2), b1)

holds for all a2 ∈ A2 and b1 ∈ B1. Then 〈p, q〉 will be called an object-attribute
(OA-) morphism of these generalized Chu spaces.

It is easy to see the following:

Lemma 4. The system of all generalized Chu spaces and their OA-morphisms
is a category.

6 Two commutative diagrams

In this section we assume that (A1, B1, R1, P, C, D, •) and (A2, B2, R2, P, C, D, •)
are generalized Chu spaces, 〈p, q〉 is some their object-attribute (OA-) morphism,
and the mappings ↓i and ↑i correspond to the space (Ai, Bi, Ri, P, C, D, •) and
they are defined as before. We can see the following properties:

Lemma 5. a) If p and q are surjective then ↑2 ◦ p+
C = q−D ◦ ↑1.

b) ↑1 ◦ p−C = q+
D ◦ ↑2.

DB2
↑2
−→ CA2





y
q
−

D
#





y
p
+

C

DB1
↑1
−→ CA1

DB1
↑1
−→ CA1





y
q
+

D
#





y
p
−

C

DB2
↑2
−→ CA2
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7 Conclusions and future work

In this paper we try to continue in ideas of the work of Zhang how to look at
a concept lattice from the categorial point of view. We define very naturally
a appropriate modification of Chu spaces to our generalized concept lattice. It
seems that there are more ways to define morphisms between such generalized
Chu spaces, but for the beginning we started with mappings which transform
the sets of objects and attributes only. Moreover we have defined a fuzzy version
of liftings of a function and discuss their basic properties and some commutative
relationships to the mappings defining a generalized concept lattice.

We have say that a generalized concept lattice is a generalization of till known
fuzzifications of concept lattice. But what does mean the word generalization
here? It is rather intuitive, because all these constructions lead to (all) complete
lattices. We hope that the more precise answer will be given by the category
theory, maybe it will be the existence of some canonical mapping, i.e. a functor
between corresponding Chu spaces.
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