
Concept lattice classifier :

a first step towards an iterative process of

recognition of noised graphic objects
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Abstract. In this paper, we propose a generic description of the con-
cept lattice as classifier in an iterative recognition process. The experi-
mentation is realized on the noised symbols of GREC database [6]. Our
experimentation presents a comparison with the two classical numeri-
cal classifiers that are the bayesian classifier and the nearest neighbors
classifier and some comparison elements for an iterative process.

1 Introduction

The work presented in this paper takes place in the field of automatic retro-
conversion of technical documents [16] and proposes to use concept lattice to
recognize graphic objects, and more precisely to classify noised symbols images
of GREC database [6]. This graph issued from Formal Concept Analysis (a
theory of data analysis) [18], has often been used in data mining [11]. A recent
study [10] gives a comparison of several supervised classification methods based
on concept lattice, and clearly shows the interest of its use in classification.

In study [7], we showed that concept lattice has a structure which looks like
the decision tree, and that its bigger size gives more robustness to the noise than
the decision tree. We also highlighted the recognition parameters and use the
concept lattice as a classifier in a one-step process.

Here, we present a description of an iterative process (Fig. 1), where we repeat
the recognition process with selection of new attributes (or characteristics) in
the signatures at each iteration. In the field of symbols recognition, an iterative
process is attractive because various techniques (structural, statistical) enable
to extract new data from images. In our process, discretization and in particular
selection of attributes are necessary to reduce the context size. Otherwise, we
have chosen to build the concept lattice because we need the graph to navigate
and to progressively validate attributes to classify the noised data.

Recognition process (Fig. 1) is usually composed of the learning stage and the
classification stage (section 2). In part 2.1, we describe the data learning where
data are discretized and the concept lattice is built. Classification and especially
navigation in the concept lattice is described in part 2.2. Part 3 proposes a com-
parison in cross-validation with the bayesian classifier and the nearest neighbors
classifier and at last, conclusion and extensions are presented in part 4.
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Fig. 1. The iterative recognition stages

2 Process

The iterative recognition process follows a coarse-to-fine strategy with selection
of new attributes at each iteration. The recognition process (Fig. 1) is composed
of: learning and classification. We first have a set of model objects (classes are
known) and a set of objects to classify. Classification aims to attribute a class
label to each object. After each iteration, we propose a final concept (defined in
part 2.2) which contains one or several classes. When it contains only one class,
the process is finished, otherwise, the signatures don’t discriminate enough the
classes, and another selection of attributes is needed to determine the class label.

2.1 Learning

In the general case, the learning stage consists in organizing a concept lattice data
issued from a set of objects. In our case, objects are graphic images described
by equal size normalized numerical signatures: [15, 14]. Learning stage (Fig. 1)
is composed of: discretization of data and building of the lattice.

Discretization Discretization [4, 3, 13] consists in organizing the signatures p =
(pi)i≤n issued from the objects set O, in intervals, that characterize each class
of objects. At each step of discretization, an interval is selected to be cut. This
selection depends on a cutting criterion, and the cutting process is repeated until
a stopping criterion is validated. In study [7], we selected the maximal distance
as non supervised criterion and the Hotelling’s coefficient as supervised criterion.

Here are some stopping criteria: critclass separated is ”to stop when classes are

separated”; critnb steps is ”to stop when the discretization steps number equals a

constant nb”; critnb classes max means that the final concept contains at most nb

classes; and critcutting min limits the cutting criterion above a minimal value.
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When discretization is performed, objects p ∈ O are characterized by inter-
vals I = I1 × I2 × . . . × In with Ii the intervals set of each attribute i = 1 . . . n,
and the membership relation R between objects and intervals can be deduced.

Building of the concept lattice Building of the lattice immediately follows
the discretization stage and is totally determined by the membership relation R
between objects and intervals without criterion or parameter.

A concept lattice is composed of a set of concepts ordered by inclusion, which
forms a graph (that has the lattice properties [1]). We associate to a set of objects
A ⊆ O, the set f(A) of intervals in relation R with A: f(A) = {x ∈ I | pRx ∀ p ∈
A}. Dually, for a set of intervals B ⊆ I, we define the set g(B) of objects in
relation R with B: g(B) = {p ∈ O | pRx ∀ x ∈ B}.

A formal concept is a pair objects-intervals (A,B) with A ⊆ O, B ⊆ I,
f(A) = B and g(B) = A. Two concepts (A1, B1) and (A2, B2) are in relation in
the concept lattice if they verify the inclusion property: (A1, B1) ≤ (A2, B2) ⇔
A1 ⊇ A2 equivalent to B1 ⊆ B2. Let ≺ be the transitive reduction associated
to ≤. The minimal concept (O, f(O)) according to the relation ≤ contains the
whole objects O and the set f(O). Note that f(O) = ∅ when intervals shared by
all the objects are removed. Dually, the maximal concept is (g(I), I). For more
information about Galois connection and concept lattice, see [1].

Several algorithms can generate the concept lattice: Bordat [2], Ganter [5],
Valtchev et al. [17] and Nourine and Raynaud [12] which has the best theoretic
complexity (quadratic complexity by element of the produced lattice). The main
limit of concept lattice is its cost in time and space. Indeed, its size is bounded
by 2|S| in the worst case, and by |S| in the best case. The main advantage of
this graph is its good readability because it is easy to interpret.

2.2 Classification

Concept lattice can be seen as a search space in which we move by validation of
the intervals issued from the discretization stage. During the classification, the
signature s = (s1, . . . , sn) of the object to recognize is introduced in the concept
lattice starting from the minimal concept : (O, f(O)) meaning that the whole
classes of objects are candidates to recognition and no interval is validated. We
progress step by step in the Hasse diagram of the concept lattice by validation
of new intervals and consequently by reduction of the objects set and their
corresponding classes, until we reach a final concept.

A concept is a final concept when it is the last concept in the classification
progress containing objects of some class. A final concept (A,B) corresponds to
the sup-irreducibles of the lattice. (see [1]) and is characterized by:

|GetClasses((A,B))|! =
∑

(A′,B′)≻(A,B)

|GetClasses((A′, B′))|

From a current concept, an elementary step of classification consists in se-
lecting an interval from a set of intervals S, to progress toward a new con-
cept. More precisely, S is a family of intervals obtained from the n immediate

Concept lattice classifier

259



successors (A1, B1), . . . , (An, Bn) of the current concept (A,B) and defined by:
S =

⋃n

i=1 Bi\B = {X1, . . . ,Xn}. Thus, the choice criterion parameter consists
in choosing a subset Xi of intervals among S using a distance measure d.

In our experiments, symbols are noised and thus values of their signature can
be modified. To make supple the boundaries of intervals we can introduce the
fuzzy theory. Then, the distance measure would be d(si, x) = µA(x), with µ the
likelihood degree of the assertion x ∈ A, and A a fuzzy set.

3 Experimental results

Our previous work [7] showed that concept lattice is more appropriated to the
classification of noised graphic objects than the decision tree. Otherwise, exper-
imental results showed that the Radon signature [14], the Hotelling’s cutting
criterion seem to be the most appropriate and are used in these new tests.

3.1 Tests with separation of classes

In this experiment, concept lattice is compared to bayesian classifier and nearest
neighbors classifier (k-NN). For the concept lattice, we use critclass separated as
stopping criterion, so one iteration is required to obtain a label of class. Our data
consist of 2 sets of 10 classes of symbols of GREC2003 [6] (namely cl1-10 and
cl11-20), where each class contains 1 ”model” symbol and 90 symbols (Fig. 2
(left)) noised by the Kanungo method [8]. We use another data set composed of
25 classes (namely cl1-25) of GREC2005 database (Fig. 2 (right)). This symbols
set is more noised than those of GREC2003, and is composed of 175 symbols.

Fig. 2. 10 examples of ”model” symbols of GREC2003 database (left) and 6 examples
of noised symbols of GREC2005 database (right)

We test the 3 classifiers by the cross-validation technique [9]. Symbols are
partitioned in n blocks of equal size. Each block is used as a learning set, and the
other blocks are tested. The test result is the average of the n recognition rates.
On GREC2003 symbols, we try: 5 blocks of 182 symbols (test 1), 10 blocks of 91
symbols (test 2) and 26 blocks of 35 symbols (test 3). On GREC2005 symbols,
we try 5 blocks of 35 symbols (test 4). Recognition rates are shown in Figure 3.

For test 4, results are really low due to the high level of noise. From these
results, we deduced that k-NN classifier gives the best rates, and bayesian classi-
fier gives better rates than the concept lattice only when the size of the learning
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set is important (tests 1 and 2). Notice that concept lattice only needs between
6 and 15 attributes of the Radon signature among the 50 values, on the contrary
to the bayesian and the k-NN classifiers. The relatively good results of these
tests indicate that an iterative process is an interesting way to explore.

Fig. 3. Results of cross-validation for the 3 classifiers

3.2 Tests without separation of classes

In order to set up an iterative process, we need to define a stopping criterion of
discretization. We evaluate the potential of recognition in a one iteration process
for the following stopping criteria: critclass separated, critnb steps with nb = 5 or
10 and critcutting min with Hotelling’s cutting criterion > 0, 5. These tests are
performed on symbols of GREC2005 (presented in test 4).

Fig. 4. Mean results at first iteration of recognition process on symbols of GREC2005
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Figure 4 shows the mean number of: discretization steps, attributes used,
and concepts (left); and 3 mean rates: real rates, potential rates and restrictive
rates to separated classes (right) described below. Notice that the scale is a
logarithmic one (left graphic). Let rs be a boolean where rs = 1 when the class
of symbol s is included in the final concept (A,B) chosen by the process; and
rs = 0 otherwise. Notice that these 3 rates are equal when the stopping criterion
is critclass separated. These 3 rates can be formally defined by:

– Real rate = 1
symbols nb

∑
s(

rs

|GetClasses((A,B))| )

– Potential rate = 1
symbols nb

∑
s rs

– Restrictive rate = 1
symbols nb

∑
s{rs such that |GetClasses((A,B))| = 1}

These results show that with only one iteration of recognition, we obtain real
rates near to those with critclass separated. Moreover, even if the iterative process
requires the construction of several concept lattices, their size (i.e. number of
concepts) is really lower than the concept lattice built in case of critclass separated

(see Fig. 4). In conclusion, when correctly adjusted, a stopping criterion can give
a nice compromise between recognition rates and size of the lattice.

4 Conclusion

The experimentations show that concept lattice gives relatively close recogni-
tion rates than the famous k-NN classifier. Otherwise, the iterative recognition
approach described here is interesting to handle big sets of classes, what was rel-
atively costly, and the first results are promising. Moreover, this iterative system
could be useful when classes are few separable. Indeed, we could inject a more
discriminating signature to characterize these classes. We would like to manage
a new stopping criterion of discretization combination of the proposed criteria
together with the maximal number of classes in the final concepts. Indeed, this
criterion could be useful to have a better control of the discretization.
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