
An Algorithm to Find Frequent Concepts of a

Formal Context with Taxonomy

Peggy Cellier1, Sébastien Ferré1, Olivier Ridoux1 and Mireille Ducassé2

1IRISA/University of Rennes 1 and 2IRISA/INSA,
Campus universitaire de Beaulieu, 35042 Rennes, France

firstname.lastname@irisa.fr
http://www.irisa.fr/LIS/

Abstract. Formal Concept Analysis (FCA) considers attributes as a
non-ordered set. This is appropriate when the data set is not structured.
When an attribute taxonomy exists, existing techniques produce a com-
pleted context with all attributes deduced from the taxonomy. Usual
algorithms can then be applied on the completed context for finding
frequent concepts, but the results systematically contain redundant in-
formation. This article describes an algorithm which allows the frequent
concepts of a formal context with taxonomy to be computed. It works
on a non-completed context and uses the taxonomy information when
needed. The results avoid the redundancy problem with equivalent per-
formance.

1 Introduction

Formal Concept Analysis (FCA) [GW99] finds interesting clusters, called con-

cepts, in data sets. FCA is based on a formal context, i.e. a binary relation
describing a set of objects by a set of properties (attributes). A formal concept

is defined by a pair (extent, intent), where extent is the maximal set of objects
that have in their description all attributes of intent, and intent is the maximal
set of attributes common to the description of all objects of extent. Searching
all concepts is, in general, costly and not always relevant. Thus some of these
algorithms search for frequent concepts. A concept is called frequent, with re-
spect to a threshold, if the cardinal of its extent is greater than the threshold.
Algorithms have been designed in order to find frequent concepts ([STB+02]).

FCA considers attributes as a non-ordered set. There are, however, numer-
ous cases where attribute taxonomies are genuinely available. For example, most
corpus of knowledge in natural science are organized in rich taxonomies. Concep-

tual Scaling [GW99] can treat contexts with ordered attributes. A preprocessing
step produces a completed context where new attributes deduced from the tax-
onomy are included. Namely, let o be an object with initial attribute a, if in the
taxonomy a implies b, Conceptual Scaling adds attribute b to the description
of o. After the transformation, usual data mining algorithms can be applied on
the completed context for finding frequent concepts. However, the explicit links
between initial attributes and deduced attributes are lost. As a consequence, the

243

resulting frequent concepts will systematically contain redundant information.
This might be a problem. For example, it is not always relevant to recall that
a nightingale is a Muscicapidae, order Passeriformes, class Aves, category Bird,
phylum Chordata, kingdom Animalia.

In this paper, we propose an algorithm for finding frequent concepts in a
context with taxonomy. The context needs not be completed, because the tax-
onomy is taken into account, when needed, during the computation. It is based
on Bordat’s algorithm which computes the concept lattice of a formal context
[Bor86].

The algorithm is implemented into LISFS [PR03], a file system based on
Logical Concept Analysis (LCA) [FR04], a version of FCA.

The contribution of this article is to describe, and experimentally validate,
an algorithm which allows frequent concepts of a formal context with taxonomy
to be computed. Thus, it is able to compute answers at the proper level of
abstraction with respect to the taxonomy, without redundancy in the resulting
frequent concepts.

In the following, Section 2 describes the algorithm. Section 3 gives experi-
mental results. Section 4 concludes this paper.

2 Finding Frequent Concepts

Our algorithm is an adaptation of Bordat’s algorithm [Bor86,KO02]. The differ-
ences are: firstly the strategy to explore the concept lattice; secondly the under-
lying data structures, and most importantly, the possibility to use a taxonomy
to compute concepts.

The strategy of the method is top-down. The concept lattice is traversed by
first exploring one non-explored concept whose extent has the greatest cardinal.
The algorithm starts with the top concept. The taxonomy is taken into account,
when needed, during the computation.

In the following, we first present the data structures used by the algorithm,
then we give the details of the algorithm, its properties and we show the first 2
steps of computation on one example.

2.1 Data structures

The algorithm manages 2 data structures: a set of computed frequent concepts
with respect to a threshold min sup, called Solution, and a set of concepts to
explore called Exploration.

Notation: given a concept c, extc (resp. intc) is the extent of c (resp. its
intent). Given an intent i (resp. an extent e), ext(i) is the extent of i (resp. the
intent of e).

Appart from the top concept, each concept s is computed from a concept
p(s), which we call the predecessor of s. This predecessor is such that there
exists a set of attributes, X , such that exts = extp(s) ∩ ext(X). We call X an
increment of p(s). A concept c may have several increments, but we are only

Peggy Cellier et al. CLA 2006

244

Algorithm 1 Frequent concepts

Require: K, a context with taxonomy; and min sup, a minimal support
Ensure: Solution, a set of all concepts of K that are frequent with respect to min sup

1: Solution := ∅
2: Exploration.add((O → {roottax}, ∅, ∅)
3: while Exploration 6= ∅ do

4: let ((exts → X), intp(s), incrp(s)) = maxext(Exploration) in

5: ints := (intp(s) ∪tax X) ∪tax {y ∈ succ+
tax(X) | exts ⊆ ext({y})}

6: incrs := {(c → X) | ∃c′ : (c′ → X) ∈ incrp(s) ∧ c = exts ∩ c′ ∧ ‖c‖ ≥ min sup}
7: for all y ∈ succtax(X) do

8: let c = exts ∩ ext({y}) in

9: if ‖c‖ ≥ sup min then

10: incrs := incrs[c → (incrs(c) ∪ {y})]
11: end if

12: end for

13: for all (ext → Y) in incrs do

14: Exploration.add((ext → Y), ints, incrs)
15: end for

16: Solution.add(exts, ints)
17: end while

interested in increments that lead to different frequent immediate subconcepts
of c. This is approximated by a data structure incrc which contains at least all
frequent immediate subconcepts of c. In this data structure, every subconcept
is associated with its increment with respect to c. Thus, incrc is a mapping
from subconcepts to increments, and we write incrc[s → X] to express that the
mapping is modified so that c maps to X .

An invariant for the correction of the algorithm is that

incrc ⊆ {(s → X) | exts = extc ∩ ext(X) ∧ ‖exts‖ ≥ min sup} .

All elements of incrc are frequent subconcepts of c.
An invariant for completness is that

extc ⊃ exts ∧ ‖exts‖ ≥ min sup ∧ ¬∃X : (s → X) ∈ incrc

=⇒ ∃s′ : extc ⊃ exts′ ⊃ exts ∧ ∃X : (s′ → X) ∈ incrc .

All frequent subconcepts of c that are not in incrc are subconcepts of a subcon-
cept of c which is in incrc.

Structure incrc avoids to test all attributes at each step. Indeed, the set of
increments is reducing when the lattice is explored top-down. Therefore, incrc

avoids to test a lot of irrelevant attributes, by storing relevant choice points from
the previous step in the computation. In practice, concepts are represented by
their extent, so that incrc is represented by a trie indexed by extents.

2.2 Algorithm

Algorithm Frequent concepts computes all frequent concepts, exploring the con-
cept lattice top-down. Solution is initially empty (step 1). The top concept, la-

An Algorithm to Find Frequent Concepts of a Formal Context with Taxonomy

245

Fig. 1. Concept lattice with-
out taxonomy.

a cb

d e

root
tax

Fig. 2. Tax-
onomy of the
example.

Fig. 3. Completed concept
lattice.

belled by the root of the taxonomy (roottax), is put in Exploration (step 2). At
each iteration of the while loop, an element of Exploration with the largest pos-
sible extent is selected: ((exts → X), intp(s), incrp(s)) (step 4), where (exts → X)
is an element of incrp(s).

First, the intent of s is computed by completing (intp(s) ∪ X) (step 5) with
successors of X in the taxonomy. succtax(X) returns immediate successors of
attributes of X in the taxonomy and succ+

tax is the transitive closure. This is
here that the elimination of redundant attributes takes place, thanks to ∪tax.
∪tax is the union of two sets of attributes with elimination of redundancies due
to the taxonomy.

Second, the increments of s are computed by exploring the increments of p(s)
(step 6) and the successors of the attributes of X in the taxonomy (steps 7-10).
Indeed, the first are still possible increments for s. For each candidate increment,
the algorithm checks whether it actually leads to a frequent subconcept. Finally,
Exploration (steps 13-14) and Solution (step 16) are updated.

The context and the taxonomy of an example are given in Figure 1 and
Figure 2. Figure 3 shows the completed context, i.e. the explored lattice.

For this example, we assume min sup=3, and we give the first 2 steps of
computation. Initially, Solution and Exploration are:

– Solution = ∅

– Exploration = {((O → {roottax}), ∅, ∅)}.

First step: the top of the lattice is explored, i.e. s=c0. Increments of s are
computed from the taxonomy only, as there is no predecessor concept:

– incrc0
= { ({o3, o4, o7, o8, o9, o10} → {b}), ({o1, o2, o7, o8, o10} → {a}),

({o5, o6, o7, o9, o10} → {c})}

– Solution = {c0}

– Exploration = {(({o3, o4, o7, o8, o9, o10} → {b}), ∅, incrc0
), (({o1, o2, o7,

o8, o10} → {a}), ∅, incrc0
), (({o5, o6, o7, o9, o10} → {c}), ∅, incrc0

)}.

Peggy Cellier et al. CLA 2006

246

Second step: an element of Exploration with the largest possible extent is
explored: s = c2, p(s) = c0. In order to compute incrc2

, we have to consider the
elements of incrc0

and the elements in the taxonomy.

– incrc2
= { ({o7, o8, o10} → {a}), ({o7, o9, o10} → {c, d}), ({o8, o10} → {e})}///////////////

– Solution = {c0, c2}
– Exploration = {(({o1, o2, o7, o8, o10} → {a}), ∅, incrc0

), (({o5, o6, o7,
o9, o10} → {c}), ∅, incrc0

), (({o7, o9, o10} → {c,d}), {b}, incrc2
), (({o7, o8,

o10} → {a}), {b}, incrc2
)}.

In the second step, attributes d and e are introduced as successors of at-
tributes b, and attributes a and c are introduced as increments of c0, the prede-
cessor of c2.

Increment {e} is eliminated because it leads to an unfrequent concept. At-
tributes c and d are grouped into a single increment because they lead to the
same subconcept. This ensures that computed intents are complete.

2.3 Properties

The algorithm has two properties: 1) it computes all frequent concepts; 2) all
intents of computed concepts are maximal and without redundancy according
to the taxonomy.

The first property is given by the fact that every frequent concept is a subcon-
cept of a frequent concept (except top) [PBTL99], and the concepts in Explo-

ration are treated from the largest (with respect to the cardinal of the extent)
to the smallest.

The second property (the intent of a computed concept is without redun-
dancy), is given by the use of ∪tax which explicitly removes redundancy. In ad-
dition, when computing incrs, the increments from p(s) and from the taxonomy
which lead to the same concept are grouped together.

3 Experiments

The algorithm is implemented in the CAML language inside LISFS [PR03].
In LISFS, attributes can be ordered to create a taxonomy (for more details
see [PR03]). We ran experiments on an Intel(R) Pentium(R) M processor 2.00GHz
with Fedora Core release 4, 1GB of main memory.

We study a context with taxonomy about Java methods1. The context con-
tains 5 526 objects which are the methods of java.awt. They are described by
their input and output types, visibility modifiers, exceptions, keywords extracted
from their identifiers, and keywords from their comments. The context has 1 624
properties. Due to the class inheritance, the context has a natural hierarchy, i.e.
a taxonomy. There are 134 780 concepts but few of them are really frequent.

1 Available on the web at http://lfs.irisa.fr/demo-area/awt-source/

An Algorithm to Find Frequent Concepts of a Formal Context with Taxonomy

247

For this context, the execution time is proportional to the number of found con-
cepts. For example, with a threshold min sup of 5%, 189 frequent concepts are
computed in 8s and taking into account the taxonomy to compute intent allows
to reduce 39% of irrelevant attributes.

In order to study the impact on the performance, of taking into account the
taxonomy, we test the method on a context without taxonomy, using the mush-
room benchmark2. The mushroom context has 8 416 objects and 127 different
properties. The computation time is similar to the results of the algorithms Close
and A-Close on the same data [Pas00], for example with a threshold min sup of
10%, 4 793 concepts are computed in 76s. This shows that in practice, taking
into account the taxonomy does not negatively impact the performance.

4 Conclusion

We have proposed an algorithm to compute all frequent concepts in a context
with taxonomy. The main advantage of the presented algorithm is to avoid redun-
dancies due to the taxonomy, in the intents of the computed frequent concepts.
The resulting concepts are therefore more relevant. Experiments have shown
that, in practice, taking a taxonomy into account does not negatively impact
the performance.

References

[Bor86] J. Bordat. Calcul pratique du treillis de Galois d’une correspondance.
Mathématiques, Informatiques et Sciences Humaines, 24(94):31–47, 1986.

[FR04] S. Ferré and O. Ridoux. An introduction to logical information systems.
Information Processing & Management, 40(3):383–419, 2004.

[GW99] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Founda-

tions. Springer Verlag, 1999.
[KO02] S. O. Kuznetsov and S. A. Objedkov. Comparing performances of algo-

rithms for generating concept lattices. JETAI: Journal of Experimental &

Theoretical Artificial Intelligence, 14:189–216, 2002.
[Pas00] Nicolas Pasquier. Data Mining : Algorithmes d’extraction et de réduction des

règles d’association dans les bases de données. Computer science, Université
Blaise Pascal - Clermont-Ferrand II, January 2000.

[PBTL99] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering
frequent closed itemsets for association rules. In ICDT ’99: Proc. of the 7th

Int. Conf. on Database Theory, pages 398–416. Springer-Verlag, 1999.
[PR03] Yoann Padioleau and Olivier Ridoux. A logic file system. In Proc. USENIX

Annual Technical Conference, 2003.
[STB+02] Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi

Lakhal. Computing iceberg concept lattices with TITANIC. Data Knowl.

Eng., 42(2):189–222, 2002.

2 Available at ftp://ftp.ics.uci.edu/pub/machine-learning-databases/mushroom/

Peggy Cellier et al. CLA 2006

248

