
Implementing collection of sets with trie : a

stepping stone for performances?

Simon Bachelard, Olivier Raynaud, and Yoan Renaud

LIMOS - Université Blaise Pascal,

Campus universitaire des Cézeaux, Clermont-Ferrand, France

{raynaud, renaud}@isima.fr

Abstract. Main operations of the Set Collection Abstract Data Type are

insertion, research and deletion. A well known option to implement these

operations is to use hashtable. Another option is to use the data structure

known as the trie. Aim of this article is to evaluate performances of the

trie data structure when using it to implement the Set Collection A.D.T.

1 Introduction

In a general point of view, the concept notion could be seen as a couple of sets
(intention/extension). By this way the set of concepts is a collection of sets. In the
same manner the context itself is a collection of sets. The natural operations to
manage such a collection are insertion, research and deletion. By moving together
a kind of objects and a set of operations we are able to define a Set collection
Abstract Data Type (A.D.T.).
One question is then to evaluate the efficiency of the implementation of the oper-
ations. We think the efficiency should be supported by two main criterions: need
for memory and practical time complexity.
To simulate the Set Collection A.D.T. we can use a Map A.D.T. similar to the
Map interface of Java language. This Map A.D.T. maps keys to values. In case
of set collection, the keys are the collection sets. The Map A.D.T. supplies the
following operators: new(), get(e), put(e,value) and remove(e), e being the
set, value the mapping value. Java language defines an abstract class Map (or
Interface) and proposes two main implementations using a binary tree for the first
one (TreeMap) and hashtables for the other one (HashMap). We propose three
new abstract class Map implementations on trie structure. The aim is to evaluate
the previous two criterions for these three implementations.

2 Trie Implementations and Protocol

The three new implementations use the trie structure. The variations concern the
choice made to store the children of each node.

– ADT MappingList (class ADT L): The children set of a given node is im-
plemented with chained list.

311



– ADT MappingTable (class ADT T): The children set of a given node is
implemented with an array.

– ADT MappingMap (class ADT M): The children set of a given node is
implemented using the Java class HashTable.

Evaluation of our three Map A.D.T implementations and the two Java Map A.D.T
is made on three different kind of integer set collections. The first one is the Full

collection which consists in all subsets of the ground set X. The Short collection
consists in collection of sets where size of each set is short compared to the size of
X (5%). Finally, the Large collection contains large sets compared to the size of X
(40%). Moreover, tests were made on different sizes of collection(103, 104, 105, 106)
and on different sizes of ground set X (100, 500). By this way, we evaluate time
and memory performances for the get(), the put() and the remove() operators.

3 Experimental evaluation

3.1 ”Need for memory” comparison

All test results concerning Java HashMap and TreeMap are similar. A first obser-
vation shows that the trie efficiency is proven (with a list or array implementation)
in a Full context. A second observation shows that a trie implementation (with
list or array) is very competitive in a Short context. But greater is the ground set
size, less the array implementation is efficient. A third observation concerns the
case of Large context: our three new implementations need much more memory
than the Java ones (multiplied by 2) .

3.2 CPU time executions comparison

First, in general, HashMap has better performances than TreeMap for the opera-
tor put but this efficiency variation is not significant for get and remove operators.
Then, we notice that ADT T has appreciably better performances than the two
other new implementations for the operator put. Nevertheless, the performance
of ADT T decreases when the collection size or the ground set size grows up.
In a global way, we see that performances of the three new implementations for
the operator put are, in general, better than the two Java ones on Full and Short

collections. If we considere results on all kind of collections, the ADT L have a
good behavior. Finally, if we consider all results, we observe that CPU time exe-
cution for the operator put depends on the treated collection size. But it doesn’t
seem to be the same for operators get and remove. This result confirms theoret-
ical evaluation complexity which shows that these operation complexities do not
depend on the collection size.
See [1] for detailed results about this work.

References

1. O. Raynaud S. Bachelard and Y. Renaud. Implementing collection of sets with trie

: a stepping stone to performances. Technical report, 2006.

Simon Bachelard et al. CLA 2006

312


