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Abstract. Minimal generators (MGs) are the smallest ones (w.r.t. the number of

items) among equivalent itemsets sharing a common set of objects, while their as-

sociated closed itemset (CI) is the largest one. The pairs - composed by MGs and

their associated CI - divide the itemset lattice into distinct equivalence classes.

Such pairs were at the origin of various works related to generic association rule

bases, concise representations, arbitrary boolean expressions, etc. Furthermore,

the MG set presents some important properties like the order ideal. The latter

helped some level-wise bottom-up and even slightly modified depth-first algo-

rithms to efficiently extract interesting knowledge. Nevertheless, the inherent ab-

sence of a unique MG associated to a given CI motivates an in-depth study of

the possibility of discovering a kind of redundancy within the MG set. This study

was started by Dong et al. who introduced the succinct system of minimal gen-

erators (SSMG) as an attempt to eliminate the redundancy within this set. In this

paper, we give a thorough study of the SSMG as formerly defined by Dong et al.

Then, we show that the latter suffers from some drawbacks. After that, we intro-

duce new definitions allowing to overcome the limitations of their work. Finally,

an experimental evaluation shows that the SSMG makes it possible to eliminate

without information loss an important number of redundant MGs.

1 Introduction

One efficient way to characterize the itemset lattice is to divide it into different equiva-

lence classes [1]. The smallest elements (w.r.t. the number of items) in each equivalence

class are called minimal generators (MGs) [2] (also referred to as 0-free itemsets [3]

and key patterns [4]) and the largest element is called a closed itemset (CI) [5]. The set

of frequent CIs is among the first concise representations of the whole set of frequent

itemsets that were introduced in the literature. This set have been extensively studied

and tens of algorithms were proposed to efficiently extract it [4–11] (1). In the contrary,

and despite the important role played by the MGs, they have been paid little attention.

Indeed, the MG set is, in general, extracted as a means to achieve frequent itemset com-

putations [1, 13], frequent CI computations [4, 6, 7], Iceberg lattice construction [14],

etc. The use of the MGs was mainly motivated by their small sizes (they are hence the

first elements to be reached in each equivalence class) and by the fact that the MG set

1 A critical survey on frequent CI based algorithms can be found in [12].
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verifies the order ideal property which clearly increased the efficiency of both level-

wise bottom-up algorithms [4, 6, 14] and even slightly modified depth-first ones [7].

Nevertheless, some work has been done on the semantic advantages offered by the use

of MGs. These works are mainly related to generic association rule bases [2, 15–17],

concise representations [7, 18], arbitrary boolean expressions [19], etc.

Nevertheless, the inherent absence of a unique MG associated to a given CI moti-

vates an in-depth study to try to discover a kind of redundancy within the MGs associ-

ated to a given CI. This study was started thanks to Dong et al. who recently note that

some MGs associated to a given CI can be derived from other ones [20]. Indeed, they

consider the set of the MGs by distinguishing two distinct categories: succinct MGs

and redundant ones. Thus, Dong et al. introduce the succinct system of minimal gen-

erators (SSMG) as a concise representation of the MG set. They state that redundant

MGs can be pruned out from the MG set since they can straightforwardly be inferred,

without loss of information, using the information gleaned from succinct ones [20].

In this paper, we give a thorough study of the SSMG as formerly defined by Dong

et al. [20]. Then, we show that the succinct MGs, as defined in [20], proves not to be

an exact representation of the MG set (no loss of information w.r.t. redundant MGs)

in contrary to authors’ claims. Furthermore, we also show that the different SSMGs

associated to an extraction context do not necessarily share the same size, in contrary to

what was stated in [20]. After that, we introduce new definitions allowing to overcome

the limitations of the work of Dong et al. Indeed, our definitions allow, on the one hand,

the SSMG to be an exact representation and, on the other hand, the different SSMGs

associated to an extraction context to have the same size. Finally, carried out experi-

ments show that the SSMG makes it possible to eliminate without loss of information

an important number of redundant MGs and, hence, to almost reach the ideal case: only

one succinct MG per equivalence class.

The organization of the paper is as follows: Section 2 recalls some preliminary no-

tions that will be used in the remainder of the paper. Section 3 presents a detailed formal

study of the SSMG as formerly defined by Dong et al. [20], sketches its limitations,

and gives new definitions allowing to go beyond the drawbacks of their work. Section

4 is dedicated to the related work. In Section 5, several experiments illustrate the utility

of the SSMG towards eliminating redundancy within the MG set. Finally, Section 6

concludes this paper and points out our future work.

2 Preliminary notions

In this section, we present some notions that will be used in the following.

Definition 1. (EXTRACTION CONTEXT) An extraction context is a triplet K = (O, I,R),
where O represents a finite set of objects, I is a finite set of items and R is a binary

(incidence) relation (i.e., R⊆O × I). Each couple (o, i) ∈R expresses that the object

o ∈ O contains the item i ∈ I.

The closure operator (′′) denotes the closure operator φ ◦ ψ s.t. (φ, ψ) represents

a couple of operators defined by ψ : P(I) → P(O) s.t. ψ(I) = {o ∈ O | ∀ i ∈ I ,

(o, i) ∈ R} and φ : P(O) → P(I) s.t. φ(O) = {i ∈ I | ∀ o ∈ O, (o, i) ∈ R} [21].
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It induces an equivalence relation on the power set of items portioning it into distinct

subsets called equivalence classes [1]. The largest element (w.r.t. the number of items)

in each equivalence class is called a closed itemset (CI) [5] and the smallest ones are

called minimal generators (MGs) [2]. The notions of closed itemset and of minimal

generator are defined as follows:

Definition 2. (CLOSED ITEMSET) An itemset I ⊆ I is said to be closed if and only if

I ′′ = I [5]. The support of I , denoted by Supp(I), is equal to the number of objects in K
that contain I . I is said to be frequent if Supp(I) is greater than or equal to a minimum

support threshold, denoted minsupp.

Definition 3. (MINIMAL GENERATOR) An itemset g ⊆ I is said to be a minimal gen-

erator (MG) of a CI f , if and only if g′′ = f and ∄ g
1
⊂ g s.t. g′′

1
= f [2]. Thus, the set

MGf of the MGs associated to a CI f is: MGf = {g ⊆ I | g′′ = f ∧ ∄ g
1
⊂ g s.t. g′′

1

= f}.

3 Succinct System of Minimal Generators

In this section, and as a first step, we study the main structural properties of the succinct

system of minimal generators (SSMG) as formerly defined by Dong et al [20]. As a

second step, we give some drawbacks of their work. Finally, we propose new definitions

allowing to overcome these limitations.

3.1 A thorough study

Recently, Dong et al. note the existence of a certain form of redundancy within the

set of the minimal generators (MGs) associated to a given closed itemset (CI), i.e.,

that one can derive some MGs from the others. They, hence, presented a study [20] in

which they split the set of MGs associated to a given CI into three distinct subsets. The

formalization of these subsets, introduced in Definition 5, requires that we adopt a total

order relation among itemsets defined as follows.

Definition 4. (TOTAL ORDER RELATION) Let � be a total order relation among item

literals, i.e., ∀ i1, i2 ∈ I, we have i1 � i2 or i2 � i1. This relation is extended to also

cope with itemsets of different sizes by first considering their cardinality. This is done as

follows: Let X and Y be two itemsets and i an item s.t. i /∈ X and i /∈ Y . Let Card(X)

and Card(Y ) be the respective cardinalities of X and Y . We then have:

– Card(X) < Card(Y ) =⇒ X ≺ Y .

– X � Y ⇐⇒ X ∪ {i} � Y ∪ {i}.

Example 1. If we consider the lexicographic order as the total order relation �, then
(2):

- |d| < |be| =⇒ d ≺ be.
- abd � abe ⇐⇒ abd ∪ {c} � abe ∪ {c} (i.e., abcd � abce).

2 We use a separator-free form for the sets, e.g., be stands for {b, e}.
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Definition 5. (MINIMAL GENERATORS’ CLASSES) The set MGf , of the MGs associ-

ated to a CI f , can be divided into three distinct subsets as follows:

1. MGrepf = {g ∈ MGf | ∄ g1 ∈ MGf s.t. g1 ≺ g}: the subset MGrepf contains

the representative MG of f . This MG is the smallest one being given a total order

relation �.

2. MGcanf = {g ∈ MGf | g /∈ MGrepf ∧ ∀ g1 ⊂ g, g1 ∈ MGrepf1
with f1 = g′′1}:

the subset MGcanf contains the canonical MGs of f . A canonical MG is not the

smallest one in MGf and, hence, is not the representative MG of f . Nevertheless,

all its subsets are the representative MGs of their respective closed itemsets, which

are necessarily covered by f .

3. MGredf = {g ∈ MGf | ∃ g1 ⊂ g, g1 /∈ MGrepf1
with f1 = g′′1}: the subset

MGredf contains the redundant MGs of f . A redundant MG has at least one of

its subsets which is not a representative MG.

If a MG g is a representative or a canonical one, then g is called a succinct MG.

Hence, the set MGsucf , composed by the succinct MGs associated to the CI f , is

equal to the union of MGrepf and MGcanf : MGsucf = MGrepf ∪ MGcanf .

Hence, MGredf = MGf\MGsucf .

Example 2. Let us consider the extraction context K depicted by Figure 1 (Left). The

total order relation � is set to the lexicographic order. Figure 1 (Right) shows, for

each CI, the following information: its MGs, its succinct MGs and its support. In the

fourth column, the representative MG is marked with bold letters. The others are hence

canonical ones. Note that for 11 CIs, there are 23 MGs, from which only 13 are

succinct ones (11 are representative MGs and only 2 are canonical ones). The MG

“ad” is a representative one, since it is the smallest MG, w.r.t. �, among those of

“abcde”. Indeed, ad� ae, ad� bd and ad� be. The MG “e” is not the representative of

its CI “cde”, since d� e. Nevertheless, its unique subset (i.e., “∅”) is the representative

MG of its CI “c”. Hence, “e” is a canonical MG. Finally, the MG “bdg” is a redundant

one, since at least one of its subsets is not a representative MG (“bg”, for example).

The definition of the SSMG is as follows [20]:

Definition 6. (SUCCINCT SYSTEM OF MINIMAL GENERATORS) Being given a total

order relation �, a succinct system of minimal generators (SSMG) consists of, for each

CI f , the set MGrepf containing its representative MG and, if there is any, the set

MGcanf containing its canonical MGs.

It is important to mention that, for a given extraction context, the SSMG is not unique

since it closely depends on the choice of the total order relation � (e.g., the lexico-

graphic order, the ascending/descending support order, etc.).

In the remainder, the set of representative (resp. canonical, redundant, succinct and

all) MGs extracted from a context K will be denoted MGrepK (resp. MGcanK,

MGredK, MGsucK and MGK). The set of CIs extracted from K will be denoted

CIK. The letter F will be added to each denotation if the respective set is restricted to

its frequent elements.
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a b c d e f g

1 × × × × ×
2 × × × × ×
3 × × × × ×
4 × × × × × ×

CI MGs Succinct MGs Support

1 c ∅ ∅ 4

2 abc a, b a, b 3

3 cde d, e d, e 3

4 cg g g 3

5 cfg f f 2

6 abcde ad, ae, bd, be ad 2

7 abcg ag, bg ag 2

8 abcfg af, bf af 1

9 cdeg dg, eg dg 2

10 cdefg df, ef df 1

11 abcdeg adg, aeg, bdg, beg adg 1

Fig. 1. (Left) An extraction context K. (Right) The CIs extracted from K and for each one, the

corresponding MGs, succinct MGs and support.

Proposition 1. The total order relation � ensures the uniqueness of the representative

MG associated to a given CI. Hence, the cardinality of the set of representative MGs

is equal to that of CIs (i.e., Card(MGrepK) = Card(CIK)).

The proof is trivial. Indeed, there is only one representative MG per equivalence class

(see Definition 5).

Remark 1. The respective sizes of both sets MGcanK and MGredK is closely re-

lated to the nature of the extraction context, i.e., whether the objects are highly/weakly

correlated. Nevertheless, if the set MGcanK is empty, then the set MGredK is also

empty (the reverse is not always true).

To show that the set MGsucK is an order ideal, we have to prove that all subsets

of a representative MG are also representative ones. This is done thanks to Proposition

2 whose the proof requires Lemma 1.

Lemma 1. [21] Let X and Y be two itemsets. If X ′′ = Y ′′, then ∀ Z ⊆ I, (X ∪ Z)′′

= (Y ∪ Z)′′.

Proposition 2. All subsets of a representative MG are also representative ones.

Proof.

Let g be a representative MG and f its closure. Suppose, we have g1 ⊂ g and g1 /∈
MGrepf1

with f1 = g′′1 . Let g2 be the representative MG of f1. Consequently, g2 ≺
g1. Since, g′′1 = g′′2 , then, according to Lemma 1, we have (g1 ∪ (g \ g1))′′ = (g2 ∪ (g \
g1))′′ and, hence, g′′ = (g2 ∪ (g \ g1))′′. Let g3 be equal to (g2 ∪ (g \ g1)). According

to the second case in Definition 4, we have g3 ≺ g since g2 ≺ g1. If g3 is a MG, then

g can not be a representative MG what is in contradiction with the initial assumption

that g is a representative MG. If g3 is not a MG, then it exists a MG g4 such that g4 ⊂
g3 and g′′4 = g′′3 . Since Card(g4) < Card(g3), then g4 ≺ g3 (according to the first case

in Definition 4) and, hence, g4 ≺ g. This result is also in contradiction with the starting

Succinct System of Minimal Generators
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assumption. Thus, we can conclude that each subset of g is necessarily a representative

MG.

Hence, according to Proposition 2, if f is a CI, then MGsucf = MGrepf ∪ MGcanf

= {g ∈ MGf | ∀ g1 ⊂ g, g1 ∈ MGrepf1
with f1 = g′′1}.

Thanks to Proposition 3, given below with its proof, we show that the succinctness

of MGs is an anti-monotone constraint. Hence, the set MGsucK is an order ideal (or

down-set) of (2I , ⊆) [21].

Proposition 3. (ANTI-MONOTONE CONSTRAINT) Let g be an itemset. g fulfills the

following two properties:

1. If g ∈MGsucK, then ∀ g1 s.t. g1 ⊂ g, g1 ∈ MGsucK.

2. If g /∈MGsucK, then ∀ g1 s.t. g ⊂ g1, g1 /∈ MGsucK.

Proof.

1. g ∈ MGsucK =⇒ ∀ g1 s.t. g1 ⊂ g, g1 ∈ MGrepf1
with f1 = g′′1 (According to

Definition 5.) =⇒ ∀ g1 s.t. g1 ⊂ g, g1 ∈ MGsucf1
(Since MGrepf1

⊆ MGsucf1
.)

=⇒ ∀ g1 s.t. g1 ⊂ g, g1 ∈ MGsucK (Since MGsucf1
⊆MGsucK.).

2. g /∈ MGsucK =⇒ ∀ g1 s.t. g ⊂ g1, g1 ∈ MGredf1
with f1 = g′′1 (Indeed, g1

has at least a non-representative subset, namely g, since the latter is not a succinct

MG and, hence, is not a representative one.) =⇒ ∀ g1 s.t. g ⊂ g1, g1 /∈ MGsucf1

(According to Definition 5, g1 can not be redundant and succinct at the same time.)

=⇒ ∀ g1 s.t. g ⊂ g1, g1 /∈ MGsucK (We have g1 /∈ MGsucf1
. In addition, g1 /∈

(MGsucK\MGsucf1
) since the closure of g1 is unique and is equal to f1.). �

Since the frequency constraint is also anti-monotone, it is easy to show that the set

FMGsucK, of the succinct frequent MGs extracted from the context K, is also an

order ideal. This interesting property allowed us to propose an efficient algorithm to

extract the SSMG according to the definition of Dong et al. (see [22] for more details).

3.2 Limitations of the work of Dong et al.

Starting form Definition 6, the main facts that can be pointed out from the work of Dong

et al. can be unraveled by the following claims [20]:

Claim 1: The cardinality of a SSMG is insensitive to the considered total order relation

�, i.e., whatever the total order relation, the number of canonical MGs is the same.

Recall that the number of representative ones is exactly equal to that of CIs, as

stated by Proposition 1.

Claim 2: A SSMG is an exact representation of the MG set, i.e., if g is a redundant

MG, then g can be inferred from the SSMG without loss of information. To do

so, for each equivalence class, Dong et al. propose to infer its redundant MGs

by replacing the subsets (one or more) of its succinct MGs by non-representative

MGs having, respectively, the same closures as those of the replaced subsets [20].

For example, the redundant MG “bdg”, extracted from the context sketched by

Figure 1 (Left), can be inferred from the succinct MG “adg” by replacing its subset

“ad” by “bd” (both MGs “ad” and “bd” have the same closure).

Tarek Hamrouni et al. CLA 2006
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In what follows, we show that, according to the current definition of the SSMG, the

cardinality of the latter closely depends on the selected total order relation (contrary to

the statement of Claim 1). Furthermore, we give an example where the SSMG presents

a loss of information (contrary to the statement of Claim 2).

As mentioned in the previous subsection, Dong et al. claimed that the shift of the

total order relation � does not affect the size of the associated SSMG [20]. Such claim

seems to be true when confronted to the extraction context depicted by Figure 1. Indeed,

for different total order relations (e.g., the lexicographic order, the ascending support or-

der, the descending support order, etc.), we obtain the same number of succinct minimal

generators (MGs). It is the same for the running example used in the proper paper of

Dong et al. (see [20]). However, if we consider the extraction context sketched by Fig-

ure 2 (Left), we find that their claim is erroneous. Indeed, as shown by Figure 2 (Right),

the total number of succinct MGs is equal to 23 if the lexicographic order is of use.

Whereas, it is equal to 22 in the case of the ascending support order, and 25 in the

case of the descending support order. Hence, the number of the succinct MGs closely

depends on the chosen total order relation. The difference occurs within the equivalence

class number 11 (shown with bold letters). The other equivalence classes do not contain

any redundant MGs and, hence, are not of interest in our explanations.

Furthermore, if we adopt the ascending support order as a total order relation �,

then we find that, being given the succinct MGs, it is not possible to infer all redundant

ones. Indeed, from the succinct MGs “ea” and “acd”, only the two redundant MGs

“adf ” and “cdf ” can be inferred by replacing the subset “ac” of “acd” by the MGs

having its closure, i.e., “af ” and “cf ”. Hence, for example, the redundant MG “edf ”

will be missed if we need to infer all MGs.

Even if the first “bug” (i.e., that related to the size of the different SSMGs asso-

ciated to a given extraction context) can be regarded as not having a dramatic conse-

quence, fixing the second one is of paramount importance, since the need for exact

compact representation is always conditioned by the ability to discover all redundant

information without looking back at the extraction context. Hence, aiming to ensure the

completeness of the derivation of redundant MGs, we introduce, in the next section,

new definitions allowing to go beyond the limitations of the work proposed by Dong et

al.

3.3 Succinct System of Minimal Generators: new definitions

The set MGf of the MGs associated to a given closed itemset (CI) f can be divided

into different equivalence subclasses (3) thanks to an introduced substitution process.

The latter uses a substitution operator denoted Subst. This substitution operator is a

partial one allowing to substitute a subset of an itemset X , say Y , by another itemset

Z belonging to the same equivalence class of Y (i.e., Y ′′ = Z ′′). This operator is then

defined as follows:

3 The term equivalence subclasses is used here instead of equivalence classes to avoid the con-

fusion with the equivalence classes induced by the closure operator ′′.
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a b c d e f

1 × ×
2 × × ×
3 × ×
4 × × × ×
5 × × × × × ×
6 × ×
7 × ×
8 × ×
9 × × ×

lexicographic order ascending support order descending support order

CI MGs CI MGs CI MGs

1 ∅ ∅ ∅ ∅ ∅ ∅
2 a a a a a a

3 b b b b b b

4 c c c c c c

5 d d d d d d

6 be e eb e be e

7 f f f f f f

8 ab ab ab ab ba ba

9 acf ac, af , cf acf ac, af , cf fac fa, fc, ac

10 ad ad ad ad da da

11 abcdef ae, abc, abd, abf,

acd, adf, bcf, bdf,

cdf, cef, def

eacbdf ea, ecf, edf, acb,

acd, abd, abf,

adf, cbf, cdf, bdf

bdface ae, bdf , bda, bfa,

bfc, bac, dfa, dfc,

dfe, dac, fce

12 bcde bc, bd, ce, de ecbd ec, ed, cb, bd bdce bd, bc, de, ce

13 bf bf bf bf bf bf

14 cd cd cd cd dc dc

15 df df df df df df

16 bef ef ebf ef bfe fe

Fig. 2. (Left) An extraction context K. (Right) The CIs extracted from K and for each one,

the corresponding MGs for different total order relations (the succinct MGs, according to the

definition of Dong et al., are indicated with bold letters).

Definition 7. (SUBSTITUTION OPERATOR) LetX , Y andZ be three itemsets such that

Y ⊂X and Y ′′ = Z ′′. The substitution operator Subst, w.r.t. X , Y and Z, is defined as

follows : Subst(X , Y , Z) = (X\Y )∪Z.

To prove that X and Subst(X , Y , Z) have the same closure, we need the following

lemma.

Lemma 2. [21] Let X and Y be two itemsets. X and Y verify the following property:

(X ∪ Y )′′ = (X ′′ ∪ Y ′′)′′.

In our context, with X∪Y , we will indicate the ordered sequence of items, w.r.t. the

total order relation �, contained in X or in Y .

Proposition 4. X and Subst(X , Y , Z) belong to the same equivalence class, induced

by the closure operator ′′.

Proof.

Let W be the result of Subst(X , Y , Z), i.e., W = (X\Y )∪Z. We will show that X and

W have the same closure.

Using Lemma 2, we have: X ′′ = ((X\Y )∪Y )′′ = ((X\Y )′′∪Y ′′)′′. Since Y ′′ = Z ′′,

then X ′′ = ((X\Y )′′∪Y ′′)′′ = ((X\Y )′′∪Z ′′)′′ = ((X\Y )∪Z)′′ = W ′′. Hence, X ′′ =

W ′′. Thus, we can conclude that X and W necessarily belong to the same equivalence

class, induced by the closure operator ′′. �
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For each equivalence class C (or equivalently, for each CI f ), the substitution op-

erator induces an equivalence relation on the set MGf of the MGs of f portioning it

into distinct equivalence subclasses. The definition of an equivalence subclass requires

that we redefine the notion of redundant MG under the substitution process point of

view. Indeed, according to the definition given by Dong et al. (see Definition 5), redun-

dant MGs are blindly pruned according to purely syntactic properties, only consisting

in checking the order of their subsets w.r.t �, in their respective equivalence classes.

Hence, we propose to incorporate a semantic part based on the actual concept of redun-

dancy.

Definition 8. (MINIMAL GENERATORS’ REDUNDANCY) Let g and g1 be two MGs

belonging to the same equivalence class induced by the closure operator ′′.

• g is said to be a direct redundant (resp. derivable) with respect to (resp. from) g1,

denoted g1 ⊢ g, if Subst(g1, g2, g3) = g with g2 ⊂ g1 and g3 ∈ MGK s.t. g′′3 = g′′2 . The

operator ⊢ is reflexive, symmetric but not necessarily transitive.

• g is said to be a transitive redundant with respect to g1, denoted g1 � g, if it exists

a sequence of n MGs (n ≥ 2), gen1, gen2, ..., genn, such that geni ⊢ geni+1 (i ∈
[1..(n-1)]) with gen1 = g1 and genn = g. The operator � is reflexive, symmetric and

transitive.

For n = 2, the operator � is reduced to the operator ⊢.

Definition 9. (EQUIVALENCE SUBCLASSES) The operator � induces an equivalence

relation on the set MGf , of the MGs associated to a CI f , portioning it into distinct

subsets called equivalence subclasses. If g ∈ MGf , then the equivalence subclass of

g, denoted by [g], is the subset of MGf consisting of all elements that are transitive

redundant w.r.t. g. In other words, we have: [g] = {g1 ∈ MGf | g � g1}.

The smallest MG in each equivalence subclass, w.r.t. the total order relation �, will be

considered as its succinct MG. While, the other MGs will be qualified as redundant

MGs.

The following pseudo-code offers a straightforward way to extract the different

equivalence subclasses associated to a CI f . An equivalence subclass will be denoted

Equi SubClass.

Procedure 1: EQUIVALENCE SUBCLASSES MINER

Input: The set MGf of the MGs associated to f .

Output: The equivalence subclasses associated to f .

Begin1

S = MGf ;2

i = 1;3

While S 6= ∅ do4

gs = min�(S); /*gs is the smallest MG in S w.r.t. �.*/5

Equi SubClassi = {gs} ∪ {g ∈ S | gs � g};6

S = S\Equi SubClassi;7

i = i + 1;8

End9
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Example 3. Let us consider the extraction context depicted by Figure 2, the ascend-

ing support order as a total order relation � and the equivalence class having for CI

“eacbdf ”. Using Procedure 1, the MGs associated to “eacbdf ” are divided as follows:

1. First, S = MGeacbdf = {ea, ecf, edf, acb, acd, abd, abf, adf, cbf, cdf, bdf} and i =

1. “ea” is the smallest MG in S. Hence, Equi SubClass1 = {ea} ∪ {g ∈ S | ea �

g}. However, none MG can be deduced from “ea”. Thus, Equi SubClass1 = {ea}.
2. Second, S = S\Equi SubClass1 = {ea, ecf, edf, acb, acd, abd, abf, adf, cbf, cdf,

bdf}\{ea} = {ecf, edf, acb, acd, abd, abf, adf, cbf, cdf, bdf} and i = 2. “ecf ” is the

smallest one in S. Hence, Equi SubClass2 = {ecf} ∪ {g ∈ S | ecf � g} = {ecf}
∪ {edf, acb, abd, abf, cbf, bdf}. Indeed, Subst(ecf , ec, ed) = edf ∈ MGeacbdf (ecf
⊢ edf and, hence, ecf � edf ), Subst(ecf , ec, cb) = cbf ∈ MGeacbdf (ecf ⊢ cbf and,

hence, ecf � cbf ), Subst(cbf , cf , ac) = acb ∈ MGeacbdf (ecf � acb since ecf ⊢ cbf

and then, cbf ⊢ acb), etc.
3. Finally, S = S\Equi SubClass2 = {ecf, edf, acb, acd, abd, abf, adf, cbf, cdf, bdf}\{ecf,

edf, acb, abd, abf, cbf, bdf} = {acd, adf, cdf} and i = 3. “acd” is the smallest MG

in S. Hence, Equi SubClass3 = {acd} ∪ {g ∈ S | acd � g} = {acd} ∪ {adf, cdf}
since Subst(acd, ac, af ) = adf (acd ⊢ adf and, hence, acd � adf ) and Subst(acd,

ac, cf ) = cdf (acd ⊢ cdf and, hence, acd � cdf ).

In conclusion, MGeacbdf is divided into three equivalence subclasses as follows (succinct

MGs are marked with bold letters): MGeacbdf = {ea} ∪ {ecf , edf, acb, abd, abf, cbf, bdf}
∪ {acd, adf, cdf}. Note that “ecf” was not considered as a succinct MG according to

the initial definition that was introduced by Dong et al. since its subset “cf ” is not the

representative MG of its CI “acf ”. Hence, all MGs belonging to Equi SubClass2 can

not be inferred according to their definition, contrary to ours.

Example 4. For the same context, if we consider the descending support order as a

total order relation �, then we will note that the SSMG, as formerly defined by Dong

et al., can even contain redundancy in comparison to our definition. Indeed, thanks

to the substitution operator Subst, MGbdface is divided as follows: MGbdface = {ae} ∪
{bdf , bda, bfa, bfc, bac, dfe, fce} ∪ {dfa, dfc, dac}. The storage of the MGs “bda”

and “bfa” is then redundant and useless since they can simply be inferred starting from

the succinct MG “bdf ” (bdf � bda and bdf � bfa). Indeed, Subst(bdf , bd, bc) = bfc,
Subst(bfc, fc, fa) = bfa, Subst(bfa, fa, ac) = bac and finally Subst(bac, bc, bd) =

bda.

Property 1. The different equivalence subclasses associated to a given CI f verify the

following properties:

–
⋃i≤Card(MGsucf )

i=1 Equi SubClassi = MGf .
– ∀ i, j ∈ [1.. Card(MGsucf )] s.t. i 6= j, Equi SubClassi ∩ Equi SubClassj = ∅.

Using the new definitions of both succinct and redundant MGs (c.f., Definition

8 and Definition 9), we can now define the succinct system of minimal generators

(SSMG) in its new form as follows:

Definition 10. (SUCCINCT SYSTEM OF MINIMAL GENERATORS: NEW DEFINITION)

A succinct system of minimal generators (SSMG) is a system where only succinct MGs

are retained among all MGs associated to each CI.
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Proposition 5. Whatever the total order relation �, the substitution operator Subst

maintains unchanged the elements belonging to each equivalence subclass.

Proof.

Let �1 and �2 be two different total order relations. Let f be a CI and MGf be the set

of its associated MGs. Using �1, MGf will be divided into equivalence subclasses. Let

Equi Sub Class�1
be one of them and gs1

be its succinct MG (i.e., the smallest one in

Equi Sub Class�1
w.r.t. �1). Equi Sub Class�1

can be represented by a tree, denoted

T�1
. The root of T�1

contains the succinct MG gs1
. In this tree, a node N , which

represents a MG g, points to a node N1, which represents a MG g1, if g ⊢ g1. Hence,

from whatever node in T�1
, we can access the remaining nodes as follows: we move

downward from the node N to the node N1 using the relation g ⊢ g1 and conversely,

from N1 to N using the relation g1 ⊢ g. Indeed, if Subst(g, g2, g3) = g1 with g2 ⊂ g and

g3 ∈MGK s.t. g′′3 = g′′2 , then also Subst(g1, g3, g2) = g since the operator ⊢ is reflexive

(cf. Definition 8).

Now, consider the set Equi Sub Class�1
ordered w.r.t. to the second total order

relation �2. The obtained new set will be denoted Equi Sub Class�2
and its associated

succinct MG will be denoted gs2
. Hence, if we transform the tree T�1

in a new one,

denoted T�2
and rooted in gs2

, then we are able to reach all remaining MGs contained

in Equi Sub Class�2
thanks to the substitution application as explained above. Thus,

the change of the total order relation does not affect the content of Equi Sub Class�1

since it does not involve the deletion of any node in T�1
.

Furthermore, this change does not augment Equi Sub Class�2
by any another re-

dundant MG. Indeed, suppose that a MG denoted gnew, not already belonging to

Equi Sub Class�1
, will be added to Equi Sub Class�2

once we shift the total order

relation from �1 to �2 (i.e., gs2
� gnew but gs1

2 gnew). Since, gs1
� gs2

(gs2
∈

Equi Sub Class�1
) and gs2

� gnew, then gs1
� gnew (according to Definition 8). Hence,

gnew should belong to Equi Sub Class�1
(according to Definition 9) what is in contra-

diction with the starting assumption (g1 2 gnew). Thus, g2 2 gnew.

Therefore, we can conclude that the elements belonging to Equi Sub Class�2
are

exactly the same than those contained in Equi Sub Class�1
, ordered w.r.t. �2 instead

of �1. �

Example 5. If we review Example 3 and Example 4, we note that Equi Sub Class1,

Equi Sub Class2 and Equi Sub Class3 are exactly the same for both examples. How-

ever, they are sorted according to the ascending support order and to the descending

support order, respectively.

According to Proposition 5, the number of succinct MGs associated to each CI f (i.e.,

Card(MGsucf )) is then equal to the number of equivalence subclasses induced by

the substitution operator, independently of the chosen total order relation. Hence, the

cardinality of the set MGsucK, containing the succinct MGs that can be extracted

from the context K, remains unchanged even if we change the total order relation. In

other words, the different SSMGs associated to an extraction context have the same

size.

Proposition 6. The SSMG as newly defined ensures the inference of each redundant

MG g.
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Proof.

Since g is a redundant MG, then g is not the smallest one in its equivalence subclass.

Hence, according to the definition of an equivalence subclass (see Definition 9), it exists

a succinct MG gs belonging to the SSMG whose a substitution process certainly leads

to g (gs � g) since the number of MGs belonging to each equivalence subclass is finite.

�

According to Proposition 6, the SSMG as newly defined becomes an exact representa-

tion of the MG set.

Proposition 5 and Proposition 6 make it possible to correct the claims of Dong et

al. [20] thanks to the new semantic consideration of the concept of redundancy within

the MG set.

4 Related work

In this part, we will mainly concentrate on the concept of clone items [23, 24] since it is

closely related to our work. Clone items can be considered as a restriction of the SSMG

to equivalence classes where two or more items have the same closure, i.e., to MGs of

size one (like the couple (a, b) and the couple (d, e) of the extraction context depicted by

Figure 1 (Left)). The authors [23, 24] show that, for a couple like (a, b), items a and b

present symmetries which can be seen as redundant information since for all association

rules containing a in the antecedent there exists the same association rules where “a” is

replaced by “b” [24]. Thus, they propose to ignore all rules containing “b” but not “a”

without loss of information [24]. This reduction process was applied to the Guigues-

Duquenne basis [25] for exact association rules. Association rules of this basis present

implications between pseudo-closed itemsets [25] and closed itemsets. Note that clone

items when applied to pseudo-closed itemsets are called P-clone items [23].

5 Experimental study

In order to evaluate the utility of our approach, we conducted series of experiments on

four benchmark datasets, frequently used by the data mining community (4). Charac-

teristics of these datasets are summarized by Table 1. All experiments were run on a PC

equipped with a 2.4GHz Pentium IV and 512MB of RAM. All programs were imple-

mented in the C language. The operating system was S.U.S.E Linux 9.0 and we used

gcc 3.3.1 for the compilation. Hereafter, we use a logarithmically scaled ordinate axis

for all curves.

Figure 3 shows the effect of the succinct system of minimal generators (SSMG)

by comparing the number of the succinct frequent minimal generators (MGs) to that

of all frequent MGs. For the PUMSB and MUSHROOM datasets, a large part of the fre-

quent MGs proves to be redundant. Indeed, for PUMSB (resp. MUSHROOM), in average

52.27% (resp. 50.50%) of the frequent MGs are redundant, and the maximum rate

of redundancy reaches 64.06% (resp. 53.28%) for a minsupp value equal to 65%

4 These benchmark datasets are downloadable from: http://fimi.cs.helsinki.fi/data.
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Dataset Number of items Number of objects Average object size minsupp interval (%)

PUMSB 7, 117 49, 046 74 90 - 60

MUSHROOM 119 8, 124 23 1 - 0.01

CONNECT 129 67, 557 43 90 - 50

T40I10D100K 1, 000 100, 000 40 10 - 1

Table 1. Dataset characteristics.

(resp. 0.20%). It is important to mention that for the PUMSB dataset, the redundancy

is caused by the fact that there are some couples of items having the same closure (like

“a” and “b” of the extraction context sketched by Figure 1 (Left)). Hence, using only an

item, instead of both items forming each couple, was sufficient to eliminate all redun-

dancy, which is not the case for the MUSHROOM dataset. Moreover, it is noteworthy

that, in average, the number of succinct (resp. all) frequent MGs per equivalence class,

is equal to 1.0004 (resp. 2.2382) for the PUMSB dataset, while it is equal to 1.0589

(resp. 2.1336) for the MUSHROOM dataset. Such statistics explain why the curve rep-

resenting the number of frequent closed itemsets (CIs) is almost overlapped with that

depicting the number of succinct frequent MGs.

For the CONNECT dataset and although it is known to be a “dense” one, each frequent

CI extracted from this dataset has only a unique frequent MG and, hence, there are

no redundant ones. It is the same for the “sparse” T40I10D100K dataset. Hence, it is

worth noting that the reduction ratio from the number of all frequent MGs to that of suc-

cinct ones can be considered as a new measure for an improved dataset classification,

as mentioned by Dong et al. [20].

 1024

 4096

 16384

 65536

 262144

 1.04858e+006

 4.1943e+006

 60 65 70 75 80 85 90

N
u
m

b
e
r

minsupp (%)

Pumsb

FCIs
FMGs

succinct FMGs

 32768

 65536

 131072

 262144

 524288

 0 0.2 0.4 0.6 0.8 1

N
u
m

b
e
r

minsupp (%)

Mushroom

FCIs
FMGs

succinct FMGs
 2048

 4096

 8192

 16384

 32768

 65536

 131072

 50 60 70 80 90

N
u
m

b
e
r

minsupp (%)

Connect

FCIs
FMGs

succinct FMGs
 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

 1 2 3 4 5 6 7 8 9 10

N
u
m

b
e
r

minsupp (%)

T40I10D100K

FCIs
FMGs

succinct FMGs

Fig. 3. The number of frequent CIs (denoted FCIs), of frequent MGs (denoted FMGs) and of

succinct frequent MGs (denoted succinct FMGs).

Obtained results prove that the SSMG allows to almost reach the ideal case: 1

succinct MG per equivalence class.

6 Conclusion and future work

In this paper, we studied the principal properties of the succinct system of minimal

generators (SSMG) as formerly defined by Dong et al. Once the limitations of the

current definition mentioned, we introduced new ones aiming to make of the SSMG

an exact representation of the minimal generator (MG) set, on the one hand, and, on

the other hand, its size independent from the adopted total order relation. After that, we

discuss the main related work to ours. Finally, an experimental study confirmed that the

application of the SSMG makes it possible to get, in average, almost as many closed
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itemsets (CIs) as succinct MGs thank to the elimination of an important number of

redundant ones.

As part of future work, we plan to use of the SSMG in an in-depth structural anal-

ysis of dataset characteristics. In this context, we will propose a sparseness measure

based on the SSMG. The extension of the SSMG to the framework of generic associ-

ation rules is also an interesting issue. As a first attempt, the work we proposed in [26]

gave very encouraging results. Furthermore, we think that the application of the SSMG

to some real-life domains like biological applications will be of an added value for the

end-users.
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