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Abstract. We review the main properties of the quality measure MGK,
which has been shown to be the normalized quality measure associated
to most of the quality measures used in the data mining literature, and
which enables to handle negative association rules. On the other hand,
we characterize bases for MGK-valid association rules in terms of a clo-
sure operator induced by a Galois connection. Thus, these bases can be
derived from a Galois lattice, as do well known bases for Confidence-valid
association rules.
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1 Introduction

Association rules reveal attributes (or attribute values) that occur together fre-
quently in a data set. Their relevance is commonly assessed by means of quality
measures. Several quality measures have been proposed in the literature [1], the
most popular of them being the well-known Support and Confidence [2]. A ma-
jor problem faced in association rule mining is the large number of valid rules,
i.e., rules that meet specific constraints relative to a given (set of) quality mea-
sure(s). Such a situation is generally due to the presence of many redundant
and/or trivial rules in the set of valid ones. A way to cope with these redundant
and trivial rules is to generate a basis, i.e., a minimal set of rules from which all
the valid rules can be derived, using some inference axioms.

In this paper, we consider the quality measure MGK independently intro-
duced in [3] and in [4], and which has been shown to be the normalized quality
measure associated to most of the quality measures used in the data mining
literature [5]. On the one hand, we review its main properties. On the other
hand, we characterize bases for MGK-valid association rules in terms of a closure
operator induced by a Galois connection [6]. This result shows that these bases
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can be derived from a Galois lattice, as do well known bases for Confidence-valid
association rules [7, 8]. The rest of the paper is organized as follows.

Basic concepts relative to association rules and Galois lattices, and the main
properties of the quality measure MGK are presented in Section 2. Section 3 is
devoted to two known bases for Confidence-valid association rules, whereas the
bases we propose for MGK-valid rules are dealt with in Section 4. Finally, a short
conclusion is included in the end of the paper.

2 Association rules, Quality measures, Galois lattices

2.1 Association rules

In this paper, we place ourselves in the framework of a binary context (E,V),
where E is a finite entity set and V a finite set of boolean variables (or items)
defined on E. The subsets of V will be called itemsets, and an entity “e” will be
said to contain an item “x” if x(e) = 1.

Definition 1 An association rule of (E,V) is an ordered pair (X, Y ) of itemsets,
denoted by X→Y , where Y is required to be nonempty. The itemsets X and Y
are respectively called the “premise” and the “consequent” of the association rule
X→Y .

Given an itemset X,

• X ′ will denote the set of entities containing all the items of X, i.e.,

X ′ = {e ∈ E : ∀x ∈ X[x(e) = 1]}, and

• X will denote the negation of X, i.e., X(e) = 1 if and only if there exists

x ∈ X such that x(e) = 0; it may be noticed that X
′
= E \ X ′.

Table 1 presents a binary context K = (E, V), where E = {e1, e2, e3, e4, e5}
and V = {A,B,C, D, E}. If we let X = {B,C} then X ′ = {e2, e3, e5} and

X
′
= {e1, e4}.

Table 1. A binary context

A B C D E

e1 1 0 1 1 0
e2 0 1 1 0 1
e3 1 1 1 0 1
e4 0 1 0 0 1
e5 1 1 1 0 1

According to the definition above, the binary context (E, V) contains 2|V|(2|V|−
1) association rules among which several are certainly irrelevant. To cope with
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this, quality measures, also called interestingness measures, are used to capture
only those association rules meeting some given constraints [1]. In the sequel, E

will denote a finite entity set, V a finite set of boolean variables defined on E,
and K the binary context (E,V).

2.2 Quality measures for association rules

Let Σ denote the set of association rules of the binary context K.

Definition 2 A quality measure for the association rules of K is a real-valued
map µ defined on Σ.

There are several quality measures introduced in the literature, the most popular
of them being Support and Confidence [2].

The support of an itemset X, denoted by Supp(X), is the proportion of enti-

ties in E containing all the items belonging to X; it is defined by Supp(X) = |X′|
|E| ,

where, for any finite set W , |W | denotes the number of its elements. Denoting

by p the intuitive probability measure defined on (E,P(E)) by p(E) = |E|
|E| for

E ⊆ E, the support of X can be written in terms of p as Supp(X) = p(X ′).
The support of an association rule X→Y is defined by:

Supp(X→Y ) = Supp(X ∪ Y ) = p((X ∪ Y )′) = p(X ′ ∩ Y ′).

The confidence of X→Y , denoted by Conf(X→Y ), is the proportion of entities
containing all the items belonging to Y , among those entities containing all the
items belonging to X; it is defined by:

Conf(X→Y ) =
Supp(X→Y )

Supp(X)
=

p(X ′ ∩ Y ′)

p(X ′)
= p(Y ′|X ′),

where p(Y ′|X ′) is the conditional probability of Y ′ given X ′.
The two following straightforward inequalities involving conditional proba-

bilities may help to understand the definition of the quality measure MGK below.

(i) if p(Y ′|X ′) ≥ p(Y ′), then 0 ≤ p(Y ′|X ′) − p(Y ′) ≤ 1 − p(Y ′);
(ii) if p(Y ′|X ′) ≤ p(Y ′), then −p(Y ′) ≤ p(Y ′|X ′) − p(Y ′) ≤ 0.

The quality measure MGK independently introduced in [3] and in [4], is defined
by:

MGK(X→Y ) =

{

p(Y ′|X′)−p(Y ′)
1−p(Y ′) if p(Y ′|X ′) ≥ p(Y ′);

p(Y ′|X′)−p(Y ′)
p(Y ′) if p(Y ′|X ′) ≤ p(Y ′).

In this paper, we will be mainly concerned with the quality measures Confi-
dence and MGK. The quality measure Confidence is clearly a probability measure
and its properties are more or less well known. For instance, Conf(X→Y ) = 0
if and only if X and Y are incompatible. Moreover, the Confidence measure
is not symmetric (i.e. Conf(X→Y ) is not always equal to Conf(Y →X)), and

Galois Lattices and Bases for M_GK−valid Association Rules

129



Conf(X→Y ) = 1 if and only if X ′ ⊆ Y ′, i.e., if X logically implies Y . How-
ever, the Confidence measure does not reflect the independence between the
premise and the consequent of an association rule. Indeed, in case of indepen-
dence between X and Y , p(Y ′|X ′) = p(Y ′) and, equivalently, p(X ′|Y ′) = p(X ′).
Furthermore, as quoted in [9], Confidence does not satisfy the logical principle
of contraposition, i.e., Conf(Y →X) is not always equal to Conf(X→Y ).

On the other hand, it can be easily checked that MGK satisfies the five fol-
lowing properties:

1. MGK(X→Y ) = −1 if and only if X and Y are incompatible, i.e., if p(X ′ ∩
Y ′) = 0;

2. −1 ≤ MGK(X→Y ) < 0 if and only if X disfavors Y (or X and Y are
negatively dependent), i.e., if p(Y ′|X ′) < p(Y ′);

3. MGK(X→Y ) = 0 if and only if X and Y are independent, i.e., if p(X ′∩Y ′) =
p(X ′)p(Y ′);

4. 0 < MGK(X→Y ) ≤ 1 if and only if X favors Y (or X and Y are positively
dependent), i.e., if p(Y ′|X ′) > p(Y ′);

5. MGK(X→Y ) = 1 if and only if X logically implies Y , i.e., if p(Y ′|X ′) = 1.

This shows that the values of MGK lie into the interval [−1,+1] as well as
they reflect references situations such as incompatibility, negative dependence,
independence, positive dependence, and logical implication between the premise
and the consequent. Thus, according to [5], MGK is a normalized quality measure.
Moreover, it has been shown in [5] that MGK is the normalized quality measure
associated to most of the quality measures proposed in the literature, including
Support and Confidence [2], φ- coefficient [10], Laplace, Rule interest, Cosine and
Kappa (cf. [11]), and Lift [12]. That is, if we normalize such a quality measure by
transforming its expression in order to make its values both lie into the interval
[−1,+1] and reflect the five reference situations mentioned above, then we obtain
the quality measure MGK. In other words, all these quality measures can be
written as affine functions of MGK, with coefficients depending on the support
of the premise and/or the support of the consequent. Furthermore, unlike several
other quality measures, MGK satisfies the logical principle of contraposition in
case of positive dependence, i.e., MGK(Y →X) = MGK(X→Y ) when X favors
Y [13]. In addition, the greater the absolute value of MGK(X→Y ), the stronger
the (positive or negative) dependence between X and Y .

The following result provides us with relationships between positive depen-
dence and negative dependence.

Proposition 1 Let X and Y be two itemsets. Then the three following condi-
tions are equivalent.

(1) X disfavors Y .
(2) X favors Y .
(3) X favors Y .

This result shows that the so-called right-hand side negative (RHSN) rule
X→Y and/or the so-called left-hand side negative (LHSN) rule (X→Y ) can be
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of interest when X disfavors Y . This is an additional motivation for our choice
of MGK because MGK enables to handle negative rules as well as positive ones,
i.e., those which do not involve negation of itemsets.

It should be noticed that only a rule whose premise favors its consequent is
interesting, regardless if it is a positive or a negative rule. Thus, let MGK

f (X→Y )
denote the value of MGK(X→Y ) when X favors Y , i.e.,

MGK
f (X→Y ) = p(Y ′|X′)−p(Y ′)

1−p(Y ′) , and let MGK
df (X→Y ) denote the value of

MGK(X→Y ) when X disfavors Y , i.e., MGK
df (X→Y ) = p(Y ′|X′)−p(Y ′)

p(Y ′) . The

next result shows that the value of MGK for a RHSN rule is equal to that of
MGK for the corresponding positive rule, on the one hand, and, on the other
hand, this value both determines and can be determined from that for the cor-
responding LHSN rule.

Proposition 2 Let X and Y be two itemsets. Then the two following properties
hold.

(1) MGK
f (X→Y ) = −MGK

df (X→Y ).

(2) MGK
f (X→Y ) = P (X′)

1−P (X′)
P (Y ′)

1−P (Y ′)MGK
f (X→Y ).

Definition 3 Let µ be a quality measure, and let α > 0 be a positive real num-
ber. Let X→Y be a positive or a (right-hand side, left-hand side or both side)
negative association rule. Then X→Y is said to be valid w.r.t. α in the sense of
µ or, simply, (µ, α)-valid if µ(X→Y ) ≥ α. When the meaning is clear from the
context, we omit the validity threshold α and/or the quality measure µ, and talk
about µ-valid or, simply, valid association rules.

In the sequel, α will denote a minimum validity threshold belonging to the
interval ]0, 1[. As a consequence of Proposition 2 above, LHSN MGK-valid rules
can be obtained from RHSN ones, as stated in the next corollary.

Corollary 1 If X and Y are two itemsets such that X disfavors Y , then
MGK

f (X→Y ) ≥ α if and only if MGK
f (X→Y ) ≥ α( 1

Supp(X) − 1)( 1
Supp(Y ) − 1).

To summarize, we need to consider negative rules as well as positive ones.
However, LHSN MGK-valid rules can be derived from RHSN ones w.r.t. a cor-
responding validity threshold, so that we can restrict ourselves to generate only
RHSN MGK-valid rules. Moreover, as MGK satisfies the logical principle of con-
traposition when the premise favors the consequent, the both side negative MGK-
valid rules can also be derived from their corresponding positive MGK-valid ones
w.r.t. the same validity threshold. Therefore, we will consider only positive rules
and RHSN rules in the sequel. Hence, we will simply use the term negative rule
to mean RHSN rule.

One of the major problems faced in association rule mining is the huge num-
ber of generated rules. Indeed, despite the fact that a (set of) quality measure(s)
is used in order to capture only those rules meeting some given constraints,
the set of generated rules can still be of a very large size, due to the presence

Galois Lattices and Bases for M_GK−valid Association Rules

131



of redundant and/or trivial rules. Indeed, for a given quality measure µ, the
set of µ-valid association rules often contains many rules that are redundant
in the sense that they can be derived from other µ-valid rules. For instance, if
Conf(X→Y ) = 1 and Conf(Y →Z) = 1, then Conf(X→Z) = 1. Thus, if we look
for Confidence-exact association rules, i.e. rules whose confidence is equal to 1,
then the rule X→Z is redundant when the rules X→Y and Y →Z are given,
since it can be derived from these ones.

On the other hand, some rules are valid whatever the validity threshold is,
and thus, are not informative at all. For instance, for any itemsets X and Y
with Y ⊆X, the rule X→Y is Confidence-exact. Therefore, if we are interested
in informative Confidence-exact association rules, then the rules of the form
X→Y with Y ⊆X are not worth generating.

A way to cope with redundant or non informative association rules without
loss of information is to generate a basis for the set of valid rules. Indeed, a basis
is a set of rules from which any valid rule can be derived using given inference
axioms, and which is minimal (w.r.t. set inclusion) among the rule sets having
this property. In this paper, we characterize bases for MGK-valid association
rules of a binary context, in terms of the closure operator induced by a Galois
connection. Thus, these bases can be derived from a Galois lattice, as do bases
for positive Confidence-valid rules.

2.3 The Galois lattices of a binary context

The binary context K induces a Galois connection between the partially ordered
sets (P(E),⊆) and (P(V),⊆) by means of the maps

f : X 7→ ∩
x∈X

{v ∈ V : v(x) = 1} = X ′

and
g : Y 7→ ∩

v∈Y
{x ∈ E : v(x) = 1},

for X ⊆ E and Y ⊆ V [14]. Moreover, the Galois connection (f, g) induces, in
turn, a closure operator ϕ := f ◦ g on (P(V),⊆) [6]. That is, for X, Y ⊆ V:

(C1) X ⊆ ϕ(X) (extensivity);
(C2) X ⊆ Y implies ϕ(X) ⊆ ϕ(Y ) (isotony);
(C3) ϕ(ϕ(X)) = ϕ(X) (idempotence).

Let G(K) denote the set of all pairs (X, Y ) ∈ P(E) × P(V) such that ϕ(Y ) = Y
and g(Y ) = X. Then G(K), endowed with the order defined by (X1, Y1) ≤
(X2, Y2) if and only if X1 ⊆ X2 (or, equivalently Y2 ⊆ Y1), is a complete lattice
called the Galois lattice of the binary context K [14], also known as the concept
lattice of the formal context (E,V,R), where R is the binary relation from E to
V defined by xRv if and only if v(x) = 1 [15].

Example 1 Consider the binary context K given in Table 1. Then, the pair
({e2, e3, e5}, {B,C}) is a member of G(K). But though ϕ({B,C}) = {B,C},
({e2, e3}, {B,C}) does not belong to G(K) since g({B,C}) 6= {e2, e3}.
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3 Bases for Confidence-valid association rules

This section is intended to remind two known bases for positive Confidence-valid
association rules, namely, the Luxemburger basis for approximate rules and the
Guigues-Duquenne basis for exact ones.

The set of positive Confidence-exact association rules is a full implicational
system, i.e., it satisfies the following Armstrong’s inference axioms for all item-
sets X, Y, Z [16]:

(PE1) Y ⊆X implies X→Y ;
(PE2) X→Y and Y →Z imply X→Z;
(PE3) X→Y and Z→T imply X ∪ Z→Y ∪ T .

Thus, the Guigues-Duquenne basis [7] for full implicational systems is by the
way a basis for positive Confidence-exact rules. To define this basis, we need to
recall the notion of a critical set of a closure operator.

Consider the closure operator ϕ, induced on P(V) by the Galois connection
(f, g) defined above. An itemset X is said to be ϕ-closed if ϕ(X) = X; it is said
to be ϕ-quasi-closed if it is not ϕ-closed and for all Y ⊂ X, either ϕ(Y ) ⊂ X or
X ⊂ ϕ(Y ) [17]; it is said to be ϕ-critical if it is minimal among the ϕ-quasi-closed
itemsets Y such that ϕ(Y ) = ϕ(X) [18]. A definition of quasi-closed sets in terms
of Moore families can be found in [19–21], as well as other characterizations of
ϕ−critical sets.

The Guigues-Duquenne basis [7] for positive Confidence-exact association
rules is the set BPE defined by

BPE = {X→ϕ(X) \ X : X is ϕ-critical}.

This basis has been adapted to Support-and-Confindence-exact association rules
by [22] and [23], who placed association rule mining problem within the theoretic
framework of Galois lattices.

Example 2 The rules B→E and D→AC are two rules belonging to BPE, from
which many other positive MGK-exact rules such as, for instance, BD→ACE,
AB→E and AD→ACE can be derived, using (PE1), (PE2) and (PE3).

The Luxemburger basis [8] for Confidence-approximate association rules is
the set LB defined by

LB = {X→Y : X = ϕ(X), Y = ϕ(Y ), X ≺ Y and Conf(X→Y ) ≥ α},

where X ≺ Y means that X ⊂ Y and there is no ϕ-closed set Z such that
X ⊂ Z ⊂ Y .

4 Bases for MGK-valid association rules

In this section, we characterize a basis for (MGK, α)-valid association rules. This
basis is in fact the union of four bases: a basis for positive exact rules (i.e. the
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rules X→Y such that MGK(X→Y ) = 1), a basis for negative exact rules (i.e. the
rules X→Y such that MGK(X→Y ) = 1), a basis for positive approximate rules
(i.e. the rules X→Y such that α ≤ MGK(X→Y ) < 1), and a basis for negative
approximate rules (i.e. the rules X→Y such that α ≤ MGK(X→Y ) < 1).

4.1 Basis for positive MGK-exact association rules

The set of positive MGK-exact rules coincides with that of positive Confidence-
exact ones. Thus, the basis BPE for Confidence-exact association rules is by the
way a basis for positive MGK-exact rules.

4.2 Basis for negative MGK-exact association rules

Recall that negative association rules are rules of the form X→Y , where X and
Y are itemsets. The following straightforward but instrumental properties define
their support and confidence.

Proposition 3 Let X and Y be two itemsets. Then the three following condi-
tions hold.

(1) Supp(X) = 1 − Supp(X).
(2) Supp(X→Y ) = Supp(X) − Supp(X→Y ).
(3) Conf(X→Y ) = 1 − Conf(X→Y ).

Negative MGK-exact association rules are those negative rules X→Y such
that MGK(X→Y ) = 1. The next easily-checked result characterizes them in
terms of the support or the confidence of their corresponding positive rules.

Proposition 4 Let X and Y be two itemsets such that Supp(X) 6= 0 and
Supp(Y ) 6= 0. Then the following conditions are equivalent:

(1) MGK(X→Y ) = 1. (2) MGK(X→Y ) = −1.
(3) Conf(X→Y ) = 0. (4) Supp(X→Y ) = 0.

In the sequel, for x ∈ V and X, Y ⊆V, we will sometimes denote {x} by x, X ∪Y
by XY and {x} ∪ X by x + X. Proposition 4 leads us to consider the following
inference axioms for any itemsets X, Y, Z:

(NE1) X→Y and Supp(Y Z) > 0 imply X→Y Z;
(NE2) X→Y , Z ⊂ X and Supp(ZY ) = 0 imply Z→Y .

The next result shows that every association rule derived from negative MGK-
exact ones using (NE1) and (NE2) is also negative MGK-exact.

Proposition 5 The inference axioms (NE1) and (NE2) are sound for negative
MGK-exact association rules.
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Proposition 4 also leads us to consider the positive border of the set of item-
sets having a null support [24], i.e., the set

Bd+(0) = {X⊆V : Supp(X) > 0and for all x /∈ X[Supp(x + X) = 0]}

consisting of maximal itemsets (w.r.t. set inclusion) having a non null support.

Example 3 For the context given in Table 1, Bd+(0) = {ACD,BCE,ABCE}.

We now go on to characterize the basis we propose for the set of negative MGK-
exact association rules.

Theorem 1 The set BNE defined by

BNE = {X→x : X ∈ Bd+(0) and x /∈ X}

is a basis for negative MGK-exact association rules w.r.t. the inference axioms
(NE1) and (NE2).

Example 4 For the context given in Table 1, BNE = {ABCE→D,ACD→B,
ACD→E,BCE→A,BCE→D}. Moreover, the eleven rules ABCE→D,
ABCE→AD, ABCE→CD, ABE→ACD, BE→AD, E→AD, B→AD, E→CD,
B→CD, E→ACD, B→ACD can be derived from the rule ABCE→D, using
(NE1) and (NE2).

It may be noticed that the positive border Bd+(0) is nothing else than the set
of maximal ϕ-closed itemsets having a strictly positive support. Thus, the basis
BNE is clearly characterized in terms of the closure operator ϕ. It may also be
noticed that Y →X is a negative MGK-exact rule whenever X→Y is. However
these two rules are not always equally informative. Indeed, if, for instance, |X1| >
|X2| > |Y1| > |Y2|, then the rule X2→Y2 is more informative than any other
negative rule involving the itemsets X1, X2, Y1, Y2.

4.3 Basis for positive MGK-approximate association rules

Positive (MGK, α)-approximate association rules are those positive rules X→Y
such that α ≤ MGK(X→Y ) < 1. The following straightforward result character-
izes them in terms of their confidence.

Proposition 6 Let X and Y be two itemsets such that X favors Y . Then α ≤
MGK(X→Y ) < 1 if and only if Supp(Y )(1 − α) + α ≤ Conf(X→Y ) < 1.

This result leads us to consider the following inference axiom for any itemsets
X, Y, Z, T :

(PA) X→Y , ϕ(X) = ϕ(Z) and ϕ(Y ) = ϕ(T ) imply Z→T .

The two following technical lemmas will be helpful for proving the soundness of
the axiom (PA). The first lemma shows that every itemset has the same support
as its ϕ-closure [25].
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Lemma 1 For any itemset X, Supp(ϕ(X)) = Supp(X).

The second lemma is a characterization of closure operators by means of path
independence property [26, 21].

Lemma 2 An extensive function φ on a finite powerset, say P, is a closure
operator on P if and only if it satisfies the path independence property: φ(X ∪
Y ) = φ(φ(X) ∪ φ(Y )), for any X, Y ∈ P.

The next proposition shows that every association rule derived from a positive
MGK-approximate one, using the inference axiom (PA), is also positive MGK-
approximate.

Proposition 7 The inference axiom (PA) is sound for positive (MGK, α)-appro-
ximate association rules.

We now go on to characterize the basis we propose for the set of positive MGK-
approximate association rules.

Theorem 2 The set BPA(α) defined by

BPA(α) = {X→Y : ϕ(X) = X, ϕ(Y ) = Y,Supp(Y )(1−α)+α ≤ Conf(X→Y ) < 1}

is a basis for positive (MGK, α)-approximate association rules w.r.t. the inference
axiom (PA).

Example 5 Consider the context given in Table 1 and let the minimum validity
threshold α be set to 1

10 . Then, the rule AC→BCE is a member of BPA(α) from
which can be derived the five rules A→BC, A→CE, A→BCE, AC→BC and
AC→CE, using the inference axiom (PA).

4.4 Basis for negative MGK-approximate association rules

Negative (MGK, α)-approximate association rules are those negative rules X→Y
such that α ≤ MGK(X→Y ) < 1. The next straightforward result characterizes
them in terms of the confidence of their corresponding positive rules.

Proposition 8 Let X and Y be two itemsets such that X disfavors Y . Then
α ≤ MGK(X→Y ) < 1 if and only if 0 < Conf(X→Y ) ≤ Supp(Y )(1 − α).

This result leads us to consider the following inference axiom for any itemsets
X, Y, Z, T :

(NA) X→Y , ϕ(X) = ϕ(Z) and ϕ(Y ) = ϕ(T ) imply Z→T .

The next result shows the soundness of the inference axiom (NA).

Proposition 9 The inference axiom (NA) is sound for negative (MGK, α)-appro-
ximate association rules.
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Theorem 3 below characterizes the basis we propose for the set of negative MGK-
approximate association rules.

Theorem 3 The set BNA(α) defined by

BNA(α) = {X→Y : ϕ(X) = X, ϕ(Y ) = Y, 0 < Conf(X→Y ) ≤ Supp(Y )(1−α)}

is a basis for negative (MGK, α)-approximate association rules w.r.t. the inference
axiom (NA).

Example 6 Consider the context given in Table 1 and let the minimum validity
threshold α be set to 1

10 . Then, the rule AC→BE is a member of BNA(α) from

which can be derived the five rules A→B, A→E, A→BE, AC→B and AC→E,
using the inference axiom (NA).

5 Conclusion

We reviewed the main properties of the quality measure for association rules,
MGK, independently introduced in [3] and in [4], and which has been shown to
be the normalized quality measure associated to most of the quality measures
proposed in the data mining literature [5]. On the other hand, we characterized
bases for MGK-valid association rules in terms of a closure operator induced by
a Galois connection [6]: two bases for positive rules (exact and approximate)
and two bases for negative rules (exact and approximate). Thus, these bases can
be derived from a Galois lattice, as do well known bases for Confidence-valid
association rules [7, 8].
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de Nantes, France (2000)

4. Wu, X., Zhang, C., Zhang, S.: Mining both positive and negative rules. ACM J.
Information Systems 22 (2004) 381–405

5. Feno, D., Diatta, J., Totohasina, A.: Normalisée d’une mesure probabiliste de
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