
Some Algorithmical Aspects Using the

Canonical Direct Implicationnal Basis

K. Bertet

L3I - Université de La Rochelle - av Michel Crépeau - 17042 La Rochelle
karell.bertet@iniv-lr.fr

Abstract. Closure systems on a set S arises in many areas, in particular
in formal concept analysis. Implicational systems represents an efficient
and convenient tool to handle a closure system, and have been stud-
ied in various areas, with different terminology. This paper focuses on
some algorithmical aspects of a particular unary implicationnal system
called the canonical direct basis and proposes an incremental generation
algorithm for this basis.

keywords: implicational system ; canonical direct basis ; lattice ; algorithm
; incremental generation ; closure operator ; closure system.

1 Introduction

Closure systems on a set S arise in many areas as formal concept analysis,
lattice theory, relational databases, data-mining, artificial intelligence or logical
programming, where we need efficient algorithms to handle them. Implicational
systems represents an efficient and convenient tool to handle a closure system,
and have been studied in various areas, with different terminology: they are
denoted rules and proper implications in artificial intelligence [15], functional
dependencies in databases [9], and Horn functions in logical programming ([1,5]).
One can find many others representations of a closure system: representation
by a table called a context in formal concept analysis ([7]) and data-mining ;
representation by the canonical basis in data analysis ([8]) ; representation by a
poset of irreducibles in lattice theory ([11]).

An unary implication system (UIS) Σ on a finite set S is a set of rules called
Σ-implications of the kind B → x, with B ⊆ S and x ∈ S. A subset X ⊆ S

satisfies B → x when “B ⊆ X implies x ∈ X” holds, so UIS can be used to
describe constraints on sets of elements, such as dependency or causality between
attributes. This paper focuses on algorithmical aspects of the representation of
a closure system by a particular UIS called the canonical direct basis.

Section 2 recall all the definitions (definitions of a closure system, an UIS,
a concept lattice). Section 3 defines the canonical direct basis, and its use to
generate some closures of the associated lattice. All algorithms to generate the
canonical direct basis have an exponential time complexity. In Section 4 we
propose a new generation algorithm, based on an incremental addition of new

101

implication B → x is a canonical direct basis Σ′
cd, to limit the exponential cost

in O(|S||Σcd|
|B|+1).

2 Recalls and Definitions

In this paper, a subset X = {x1, x2, . . . , xn} is written as the word X =
x1x2 . . . xn. A subset xixi+1 . . . xj ⊆ X, with 1 ≤ i ≤ j ≤ n, is written as
the subword X[i, j]. Moreover, we abuse notation and use X + x (respectively,
X \ x) for X ∪ {x} (respectively, X\{x}), with X ⊆ S and x ∈ S.

Closure system. A set system on a set S is a family of subsets of S. A closure
system F on a set S, also called a Moore family, is a set system stable by inter-
section and which contains S: S ∈ F and F1, F2 ∈ F implies F1 ∩ F2 ∈ F. The
subsets belonging to a closure system F are called the closed sets of F.

A partially ordered set P = (S,≤), also called a poset, is a set S equipped
with an order relation ≤ where an order relation is a binary relation which is
reflexive (∀x ∈ S, x ≤ x), antisymmetric (∀x 6= y ∈ S, x ≤ y imply y 6≤ x) and
transitive (∀x, y, z ∈ S, x ≤ y and y ≤ z imply x ≤ z). A poset L = (S,≤) is a
lattice if any pair {x, y} of elements of L has a join (i.e. a least upper bound)
denoted by x ∨ y and a meet (i.e. a greatest lower bound) denoted by x ∧ y.
Therefore, a lattice contains a minimum (resp. maximum) element according to
the relation ≤ called the bottom (resp. top) of the lattice, and denoted ⊥L or
simply ⊥ (resp. ⊤L or simply ⊤.)

The poset (F,⊆) is a lattice with, for each F1, F2 ∈ F, F1 ∧F2 = F1 ∩F2 and
F1 ∨F2 =

⋂

{F ∈ F |F1 ∪F2 ⊆ F}. Moreover, any lattice L is isomorphic to the
lattice of closed sets of a closure system (see [3] for more details).

A closure operator on a set S is a map ϕ on P(S) satisfying the three following
properties: ϕ is isotone (i.e. ∀X,X ′ ⊆ S, X ⊆ X ′ ⇒ ϕ(X) ⊆ ϕ(X ′)), extensive
(i.e. ∀X ⊆ S, X ⊆ ϕ(X)) and idempotent (i.e. ∀X ⊆ S, ϕ2(X) = ϕ(X)). Closure
operators are in one-to-one correspondance with closure systems. On the first
hand, the set of all closed elements of ϕ forms a closure system Fϕ:

Fϕ = {F ⊆ S |F = ϕ(F)} (1)

Dually, given a closure system F on a set S, one defines the closure ϕF(X) of a
subset X of S as the least element F ∈ F that contains X:

ϕF(X) =
⋂

{F ∈ F |X ⊆ F} (2)

In particular ϕF(∅) = ⊥F. Moreover for all F1, F2 ∈ F, F1 ∨ F2 = ϕF(F1 ∪ F2)
and F1 ∧ F2 = ϕF(F1 ∩ F2) = F1 ∩ F2.

See the survey of Caspard and Monjardet [4] for more details about closure
systems.

Karell Bertet CLA 2006

102

Implicationnal System. An Unary Implicational System (UIS for short) Σ on
S is a binary relation between P(S) and S: Σ ⊆ P(S) × S. An ordered pair
(A, b) ∈ Σ is called a Σ-implication whose premise is A and conclusion is b. It is
written A → b, meaning “A implies b”. A subset X ⊆ S respects a Σ-implication
A → b when A ⊆ X implies b ∈ X (i.e. “if X contains A then X contains b”).
X ⊆ S is Σ-closed when X respects all Σ-implications, i.e A ⊆ X implies b ∈ X

for every Σ-implication A → b. The set of all Σ-closed sets forms a closure
system FΣ on S:

FΣ = {X ⊆ S |X is Σ-closed} (3)

Then, as introduced in [16] and [17], we can associate to Σ a closure operator
ϕΣ = ϕFΣ

which defines the closure of a subset X ⊆ S

ϕΣ(X) = πΣ(X) ∪ π2
Σ(X) ∪ π3

Σ(X) ∪ . . . where (4)

πΣ(X) = X ∪
⋃

{b |A ⊆ X and A → b} (5)

Remark that S being finite, the procedure in (4) terminates. Moreover, ϕΣ(X) =
πn

Σ(X) with n ≤ |S| being the first integer such that πn
Σ(X) = πn+1

Σ (X).
An UIS Σ is a generating system of the closure system FΣ (using Eq. (1)),

and thus for the induced closure operator ϕ, and the induced lattice (FΣ ,⊆).
When some UISs Σ and Σ′ on S are generating systems for the same closure
system, they are called equivalent (i.e. FΣ = FΣ′).

An UIS Σ is called direct or iteration-free if for every X ⊆ S, ϕ(X) = πΣ(X)
(see Eq. (5)). An UIS Σ is minimal or non-redundant if Σ \ {X → y} is not
equivalent to Σ, for all X → y in Σ. It is minimum if it is of least cardinality,
i.e. if |Σ| ≤ |Σ′| for all UIS Σ′ equivalent to Σ. A minimum UIS is trivially non-
redundant, but the converse is false. Σ is optimal if s(Σ) ≤ s(Σ′) for all UIS Σ′

equivalent to Σ, where the size s(Σ) of Σ is defined by: s(Σ) =
∑

A→b∈Σ(|A|+1)
The direct-optimal property combines the directness and optimality properties:
an UIS Σ is direct-optimal if it is direct, and if s(Σ) ≤ s(Σ′) for any direct
UIS Σ′ equivalent to Σ. A minimal UIS is usually called a basis for the induced
closure system (and thus for the induced lattice), and a minimum basis is then a
basis of least cardinality. An implication X → x with x ∈ X is called trivial. An
UIS is called proper if it doesn’t contains trivial implications. When an UIS is
not proper, an equivalent proper UIS can be obtained by applying the following
treatment T1. In this paper, all UISs will be considered to be proper UISs.

T1 delete A → b from Σ when b ∈ A.

In the litterature, an implicational system (IS for short) Σ can also be defined
as a binary relation on P(S). A Σ-implication is then an ordered pair (A,B) ∈ Σ,
written A → B, with A, B ∈ P(S). An equivalent unary IS can be obtained by
applying the following treatment:

T2 replace A → B = {b1, b2, . . . , bn} by A → b1, A → b2, . . . and A → bn.

Dually, an equivalent IS can be obtained from an unary IS by applying recursively
the following treatment:

Some Algorithmical Aspects Using the canonical Direct Implicationnal basis

103

T3 replace A → B and A → B′ by A → B ∪ B′.

Generating systems (also called covers) and bases can be also defined for
IS. In this case, there exists an unique minimum basis, called the canonical
basis, also denoted the Guigues and Duquenne basis ([8]), enabling to get all the
others minimum basis. The canonical direct basis, aim of this paper, is the unique
direct-optimal basis. We denote Σcan the UIS deduced from the canonical basis
by applying T2, and Σcd the UIS deduced from the canonical direct basis by
applying T2. Other definitions and bibliographical remarks can be found in the
survey of Caspard and Monjardet in [4].

Concept lattice and closure system. A formal context K = (G,M, I) consists
of two sets G and M , and a relation I between G and M . The elements of G

are called the objects, and the elements of M are called the attributes of the
context. We define the application f that associates to every element o ∈ G the
set f(o) = {a ∈ M | (o, a) ∈ I}, and the application g that associates to every
element a ∈ M the set g(a) = {o ∈ G | (o, a) ∈ I}. The extension of f to subsets
A ⊆ G provides:

f(A) = ∩o∈Af(o) = {a ∈ M | (o, a) ∈ I ∀ o ∈ A} (6)

Dually, the extension of g to subsets B ⊆ M provides:

g(B) = ∩a∈Gg(a) = {a ∈ G | (o, a) ∈ I ∀ a ∈ B} (7)

The two applications f and g forms a Galois correspondance between G and M .

A formal concept of a formal context K is a pair (A, B) with A ⊆ G, B ⊆ M ,
f(A) = B et g(B) = A. Let C be the set of all the concepts of K, and ≤C be
the following relation on C, with (A1, B1) and (A2, B2) two concepts:

(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 (or equivalently B2 ⊆ B1) (8)

The set C equipped with the relation ≤ is a lattice called the concept lattice1

Let CG be the restriction of C to the objects where each concept (A,B) is
replaced by the subset A of objects. Dually, let CM be the restriction of C to
the attributes. Then CG is a closure system on the set G, with h = f ◦ g the
associated closure operator. Dually, CM is a closure system on the set M of
attributes, with h′ = g ◦ f the associated closure operator. Moreover, the three
lattices (CG,⊆), (CM ,⊇) and (C,≤) are isomorphic.

In formal concept analysis concept lattices are used to analyse datas when
organised by a binary relation between object and attributes. See the complete
book of Ganter and Wille [7] for a complete description of formal concept anal-
ysis.

1 This lattice is also denoted Galois lattice by reference to the Galois correspondance
(f, g) of the formal context C.

Karell Bertet CLA 2006

104

3 The canonical direct implicationnal basis

3.1 Description

The canonical direct implicationnal basis Σcd has been introduced with different
terminologies and definitions, satisfying various properties. In [2], the direct-
optimal basis is introduced with a generation way (i.e. a generation algorithm
from any equivalent UIS), and stated to verify the direct-optimal and the unicity
properties. Wild in [17] introduces the canonical iteration-free basis defined by
a caracterization of Σ-implication’s premisses (that have to be free subsets). It
also states the unicity and the directness properties. The left-minimal basis is a
restriction of any direct UIS to implications where the premisse is of minimal
cardinality. Such implications are used in data-mining area research where they
are denoted proper implications ([15]), and in relationnal databases where they
are denoted functionnal dependencies ([9]). Rush and Wille in [14] introduce
the weak-implication basis, based on the definition of a minimal transversal of a
subset, to establish a connection with the formal concept analysis.

In a recent work [1], Bertet and Monjardet state the equality between these
four basis2. The three main properties are the directness, canonical and mini-
mality properties, thus the name canonical direct implicational basis. Moreover,
a simple generation algorithm from any equivalent UIS is provided in [2].

Consider as example the closure
system on the set S = {a, b, c, d, e}:

F = {∅, b, c, d, ab, bd, bc, cd,

bcd, abe, abd, abde, abcd, S}

One can verify that F is stable by in-
tersection. The lattice (F,⊆) is repre-
sented by its Hasse diagram and the
canonical direct basis Σcd is:

Σcd =







(1) a → b (2) ac → d

(3) e → a (4) e → b

(5) ce → d

Remark that Σcd is proper UIS
since for every implication conclusion
is not included in premisse. Moreover,
Σcd is a direct UIS 3

abe abd

ab bc

abcde

abcdabde

b c

bcd

bd

0

d

cd

2 The equality is also stated with another basis, denoted the dependance’s relation

basis, defined from a particular relation between some elements of a lattice, called
the dependance relation of a lattice.

3 Consider the ϕ-closure of e: π(e) = e+a+ b by applying Σcd-implication (3) and (4)
and π(e) = ϕ(e). Consider the equivalent but non direct UIS Σ defined by deletion
of the Σcd-implication (4). In this case, π(e) = e + a by applying Σ-implication (3)
and π2(e) = (e + a) + b by applying Σ-implication (1). Therefore ϕ(e) 6= π(e), thus
Σ is not direct.

Some Algorithmical Aspects Using the canonical Direct Implicationnal basis

105

3.2 Algorithmical aspects of the canonical direct basis

Computation of a closure ϕ(X) ([2]). A number of problems related to clo-
sure systems, thus (concept) lattices or closure operators, can be answered by
computing closures of the kind ϕΣ(X), for some X ⊆ S. According to the defi-
nition (see Eq.(4)) ϕ(X) can be obtained given an UIS Σ by iteratively scanning
Σ-implications: ϕ(X) is initialized with X then increased with b for each im-
plication A → b such that ϕ(X) contains A. The computation cost depends on
the number of iterations, and in any case is bounded by |S|. It is worth noticing
that for direct (or iteration-free) UISs the computation of ϕ(X) requires only
one iteration, since ϕΣ(X) = πΣ(X).

In [10], Mannila and Räihä propose the generation of a closure ϕ(X) (algo-
rithm Linclosure) in O(|S|2|Σ|), with a given Σ as input. This algorithm itera-
tively scans implications of an UIS Σ. In order to practically limit this number
while keeping the same complexity, Wild in [17] modifies this algorithm using
additional and sophisticated data structures. Another improvement consists in
considering an UIS of minimal-size, as the canonical basis Σcan.

Using the direct property (i.e. only one iteration on the implications is re-
quired) of the canonical direct basis Σcd (i.e. the direct UIS of minimal size),
Bertet and Nebut in [2] propose the generation of a closure ϕ(X) in O(|X||Σcd|)
when expressed with respect to X or in O(s(Σcd)) when expressed with re-
spect to Σcd. Therefore, computation of a closure ϕ(X) can be performed, with
|Σcd| > |Σcan|, in O(|S|2|Σcan|) using the canonical basis Σcan, or in O(|S||Σcd|)
or in O(s(Σcd)) using the canonical direct basis Σcd.

In the cases where few closures are needed, or where a small canonical basis
is considered, it may be more efficient to iterate over Σcan-implications. On the
contrary, when lot closures are needed (for example when the whole family F

has to be generated), or where a small canonical direct basis is considered, the
second algorithm using the canonical direct basis Σcd is more efficient. Let us
also notice that Σcan gives a more concise description of the family than Σcd.

Generation of the family F or the set of concepts C ([1]). A particular problem
that can be answered by computing some closures ϕ(X) is the generation of the
complete family F, equivalent to the set of concepts C. Any generation algorithm
of F or C has to be analysed by considering the time-complexity per closure ϕ(X)
since F and C are exponential is the worst case.

The well-known algorithm generating F or C is the Next-closure algorithm
due to Ganter ([6]) in the context of the formal concept analysis ([7]). It accepts
a formal context (and more generally a closure operator) as input, and has
a polynomial space-complexity (since the closed sets have not to be stored)
and a time complexity in O(|S|3) per element. One can find various algorithms
generating F or C using different inputs, with the same complexity as the Next-
closure algorithm, i.e. in O(|S|3) per generated closed set. However, the algorithm
with the best known complexity, using a poset or a formal context as input, is
due to Nourine and Raynaud in [12]. It has a time-complexity in O(|S|2) per

Karell Bertet CLA 2006

106

generated closed set, and an exponential space-complexity since all closed sets
have to be stored in a tree structure.

Let us mention the Bertet and Nebut algorithm in [2] that generates F or
C by computing some closures ϕ(X). This algorithm has an exponential space-
complexity since the closed sets have to be stored, and a time complexity in
O(|S|2 + |S|cϕ) per element, where cϕ is the cost to generate one closure ϕ(X).
Therefore, their algorithm is in O(|S|3) using the canonical basis Σcan as input,
and in O(|S|2 + |S|s(Σcd)) using the canonical direct basis Σcd as input.

4 Generation of the canonical direct basis

4.1 One-pass generation

Since Σcd is bounded by 2|S| in the worst case, and by 1 in the best case, with
a reasonable size in practice, any generation algorithm has to be analysed by
considering the time-complexity per implication. Currently, there exists no al-
gorithm with a polynomial generation per implication. Moreover, the existence
of such a polynomial algorithm is still an open problem. Wild in [17] provides
an algorithm with an IS Σ as input that has an exponential time complexity
per implication. His algorithm computes an intermediate but larger UIS of ex-
ponential size in the worst case. Bertet and Nebut’s algorithm, described by
Proposition 1 ([2]) also generates an intermediate and exponential but direct
UIS Σd (recursive treatment T4) before minimizing it (treatment T5), and com-
putes Σcd in O(|S||Σd|

2). Let us also mention in the area of data-mining the
algorithm of Taouil and Bastide in [15] where the implications are called proper
implications. It has the same exponential time and space complexity per impli-
cation. The algorithm of Mannila in [10], with the irreducibles elements of F as
input, has an exponential time per implication in the worst case, and is based
on the generation of all minimal transversals, open problem (no known poly-
nomial algorithm, and no reduction to an NP-complete problem). Concerning
the canonical basis Σcan, let us mention the attribute-incremental algorithm of
Duquenne generating Σcan from a context ([13]).

Proposition 1. [2] The canonical direct basis Σcd is obtained from any equiv-
alent and proper UIS Σ as follows:

1. first apply recursively the following make-direct treatmentto obtain a direct
equivalent UIS 4 :

T4 for all A → b and C + b → d with d 6= b and d 6∈ A, add A∪C → d to Σ

2. then apply the following reduction treatment to minimize premisses of the
Σ-implications:

T5 for all A → b and C → b, if C ⊂ A then delete A → b from Σ.

4 When Σ is not proper, this treatment has to be apply only when b 6∈ A and d 6∈ A∪C

Some Algorithmical Aspects Using the canonical Direct Implicationnal basis

107

Name: CanonicalDirectBasis

Input: An UIS Σ = {Bi → xi : i ∈ [1, m]}

Output: The canonical direct basis Σcd

begin

Σtmp = {B1 → x1}
for i from 2 to m do

Σtmp =AddDirect(Σtmp, Bi → xi)

return Σtmp

end

Algorithm 1: Incremental Generation of the Canonical Direct Basis

4.2 Incremental generation

Time complexity of the generation of the canonical direct basis Σcd from any
equivalent UIS Σ can be improved by reducing the size of the intermediate, larger
and direct UIS Σd that has to be generated by Bertet and Nebut’s algorithm as
described in Proposition 1 (also by Wild’s algorithm in[17]). This intermediary
UIS, larger and direct, is generated by the make-direct treatment T4, before
being minimized by the reduction treatment T5 in order to obtain Σcd.

In the algorithm we propose, the principle is to alternate between the make-
direct treatment T4 and the reduction treatment T5 in an incremental way in
order to limit the size of the intermediate direct UIS generated. More formally,
let Σ = {Bi → xi : i ∈ [1, n]} the input UIS. Then Σcd can be obtained by
successively compute Σi = (Σi−1 ∪ {Bi → xi})cd for i ≤ n. Thus Σ1 = {B1 →
x1} and Σn = Σcd.

The basic step of this incremental algorithm then consists in computing
(Σ′

cd ∪ {B → x})cd, with Σ′
cd a canonical direct basis (i.e. satisfying the three

properties that are directness, canonical and minimality properties), and B → x

a new implication that can obviously be supposed to be proper (i.e. x 6∈ B) and
Σ′

cd-minimal, with the minimality defined as follows:

Definition 2 (Σ-minimal implication). Let Σ an UIS. An implication A →
b is said Σ-minimal if A 6⊂ B and B 6⊂ A for every Σ-implication B → b.

Therefore, instead of applying the make-direct treatment to every pair of
rules in (Σ′

cd ∪ {B → x})2 in a recursive way as stated by Proposition 1, it can
be reduced to the only pairs including B → x since Σ′

cd is already direct-optimal.
Theorem 4 gives a more precise characterization of the pairs of (Σ′

cd∪{B → x})2

for which the make-direct treatment has to be applied. It is based on the ⊗D-
operator to represent the make-direct treatment as follows:

Karell Bertet CLA 2006

108

Definition 3 (The ⊗D operator). The ⊗D operator is a binary operator5 de-
fined on an UIS Σ, with A → b and C → d be two Σ-implications, by:

(A → b ⊗D C → d) = A ∪ C\b → d when b ∈ C

= ∅ → ∅ when b 6∈ C

Theorem 4. Let Σ′
cd be a canonical direct basis ; B → x be a proper and Σ′

cd-
minimal implication and P → c be an added implication in (Σ′

cd∪B → x)cd\Σ
′
cd.

Then P → c verifies one of the two following cases:

1. c = x and P → x is obtained by application of the make-direct treatment T4
on the set K of Σ′

cd-implications (in (9)) as follows:

P → x = (Cn → xn ⊗D (. . . ⊗D (C2 → x2 ⊗D (C1 → x1 ⊗D B → x))))

= (B\(x1 . . . xn) ∪
⋃

i≤n

Ci) → x

K = {C1 → x1, . . . , Cn → xn : x 6∈ Ci , xi ∈ B\(x1 . . . xi−1), ∀i ≤ n} (9)

2. c 6= x and P → c is obtained by application of the make-direct treatment T4
on the set of Σ′

cd-implications in (10) as follows:

P → c = (Cn → xn ⊗D (. . . ⊗D (C1 → x1 ⊗D (B → x ⊗D A → c))))

= (B\(x1 . . . xn) ∪ A\(xx1 . . . xn) ∪
⋃

i≤n

Ci) → c

K
⋃

{A → c : c 6∈ B and x ∈ A} (10)

Proof. Then P → c is issued from a sequence of make-direct treatments T4,
and can formally be described by an expression composed of some initial Σ′

cd-
implications and the new implication B → x together with the binary ⊗D-
operator. However, every such expression of ⊗D-operators doesn’t give raise to a
new implication since it can be deleted by the reduction treatment T5, and thus
not being minimal. Some expressions have not to be considered to obtained min-
imal implications in Σcd, thus a limitation to the two cases stated by Theorem 4
obviously issued from the four following remarks:

1. Without loss of generalities one can reduce the expressions that have to be
considered to those containing B → x: every expression that not contains
B → x either is already a Σ′

cd-implication, or is not minimal in Σ′
cd since

Σ′
cd is a canonical direct basis, thus issued from the T4 and T5 treatments.

2. With the same kind of argument, each sub-expression that not contains B →
x can equivalently be replaced by one Σ′

cd-implication using Proposition 5
since Σ′

cd verifies the directness property.

5 This ⊗D operator corresponds to the accumulative operator or the pseudo-transitive

operator in databases[9]

Some Algorithmical Aspects Using the canonical Direct Implicationnal basis

109

3. Lemma 6 (case 3) states that implications on the right hand of B → x can
be reduced to only one implication. Moreover, this implication has to be
treated in first as stated by Lemma 6 (case 4).

4. Finally, implications that have to be treated at the left hand of B → x are
restricted according to their conclusions as described by Lemma 6 (case 1).

Proposition 5. Let Σ be a direct UIS. Let P → c and P ′ + c → c′ be two Σ-
implications. Then there exist a Σ-implication P ′′ → c′ such that P ′′ ⊆ P ∪ P ′

Proof. Since Σ is direct, the canonical direct basis Σcd is included in Σ by the min-
imality. Let us prove that P ′′ → c′ such that P ′′ ⊆ P ∪ P ′ is a Σ′

cd-implication. The
make-direct treatment T4 consists in the application of the ⊗D operator as follows:

(P → c ⊗D P
′ + c → c

′) = P ∪ P
′ → c

′ (11)

Then, if the reduction treatment T5 implies the deletion P ∪ P ′ → c′, this means that

there exists a Σ′
cd-implication P ′′ → c′ such that P ′′ ⊆ P ∪ P ′.

Lemma 6. case 1: The following implications is not Σcd-minimal when for all
k ≤ m, xk 6∈ B\(C1 + . . . + Ck−1 + x1 . . . xk−1):

(Cm → xm ⊗D (. . . ⊗D (C2 → x2 ⊗D (C1 → x1 ⊗D B → x)))) (12)

case 2: The following implications is not Σcd-minimal

(Cm → xm ⊗D (. . . ⊗D (C1 → x1 ⊗D B → x))) ⊗D A → y (13)

case 3: The following implication is not Σcd-minimal:

(B → x ⊗D A1 → y1) ⊗D A2 → y2) . . . ⊗D Am → ym) (14)

Proof. case 1: Let P → x be the implication issued from Eq 12. Suppose the condi-
tion xk 6∈ B\(C1 + . . .+Ck−1 +x1 . . . xk−1) is not verified for some k ≤ m, and let
us prove that P → x is then not minimal in Σcd. Using Definition 3, P is equal to:

P = B\(x1 . . . xm) ∪
[

i≤n

Ci\(xi+1 . . . xm) (15)

Let k ≤ m be the first integer such that xk 6∈ B\(C1 + . . . + Ck−1 + x1 . . . xk−1).
This imply that xi ∈ B\(C1+ . . .+Ci +x1 . . . xi) then xi 6∈ Ci′ for every i′ < i < k.
Thus a refinement of the (Ci)’s when i < k:

P = B\(x1 . . . xm) ∪
[

i<k

Ci\(xk . . . xm) ∪
[

i≥k

Ci\(xi+1 . . . xm) (16)

Since the ⊗D-operator has been applied to Ck → xk, we deduce from xk 6∈ B\(C1+
. . .+Ck−1 +x1 . . . xk−1) that there exists k′ < k such that xk ∈ Ck′ . Proposition 5
applied to the two Σ′

cd-implications Ck′ → xk′ and Ck → xk gives raise to the
existence of the Σ′

cd-implication Pk′ → xk′ such that Pk′ ⊆ Ck ∪ Ck′\xk. When
deleting the implication Ck → xk from Eq. 12, then replacing the implication
Ck′ → xk′ by Pk′ → xk′ , a new implication P ′ → x would be provided. The

Karell Bertet CLA 2006

110

premisse P ′ of these new implication is deduced from P : it consists in replacing
in P the subsets issued from the two implications Ck → xk and Ck′ → xk′ (i.e.
Ck\(xk+1 . . . xm) and Ck′\(xk . . . xm)) by the subset issued from the implication
Pk′ → xk′ (i.e. Pk′\(xk+1 . . . xm) since k′ < k). Moreover, these new subsets is
included in P :

Pk′\(xk+1 . . . xm) ⊆ (Ck ∪ Ck′\xk)\(xk+1 . . . xm)

⊆ Ck\(xk+1 . . . xm) ∪ Ck′\(xkxk+1 . . . xm) ⊆ P

Therefore P ′ ⊆ P and P → x not minimal in Σcd. This achieves the proof.
case 2 Let P1 → y be the implication issued from Eq 13. Let P2 → y be the implication

obtained with A → c treated at first, i.e

P2 → x = (Cm → xm ⊗D (. . . ⊗D (C1 → x1 ⊗D (B → x ⊗D A → y))))

Using Definition 3 of the ⊗D-operator, one can verify that P2 is included in P1,
thus P1 → y not minimal in Σcd as stated.
Indeed, application of the last ⊗D-operator to A → y gives raise to the addition
of A\x to P1, whereas A\(xx1 . . . xm) will finally be added to P2 when A → y

is treated at first. Therefore A\(xx1 . . . xm) ⊆ A\x and P2 ⊆ P1, thus P1 not
minimal.

case 3 Let P → ym be the implication issued from Eq 14. Since Ai → yi are Σ′
cd

implications, they can equivalently be replaced, using Proposition 5, by the im-
plication A → ym with A ⊆ A1 ∪ A2\y1 ∪ . . . Am\(yn−1). Using Definition 3 of
the ⊗D-operator, one can verify that A is then included in P , thus P → ym not
minimal in Σcd as stated.

Algorithm 2 is a direct implementation of Theorem 4. It first computes the
two sets Left and Right of Σ′

cd-implications for which the make-direct treatment
has to be considered: the implications with the conclusion included in B are in
Left, and the implications containing x in their premisse are in Right. It then
manages the set LeftSet of implications that contains, at each iteration k, a
description of every set of k implications {C1 → x1, . . . , Ck → xk} ⊆ Left

verified Eq 9 for wich the make-direct treatment has to be applied. Each set of
k implications is given by a pair (P, S) such that P = C1 + . . . + Ck and S =
x1 . . . xk. The make-direct treatment (the ⊗D-operator) has then to be applied
to LeftSet×{B → x} (case 1 of Theorem 4) and to LeftSet×{B → x}×Right

(case 2 of Theorem 4).

4.3 Comparison

Complexity of Algorithm 1 stays exponential in the worst case, as in Bertet and
Nebut’s algorithm and Wild’s algorithm. However, it is important to notice that
the reduction treatment is performed together with the make-direct treatment
(the ⊗D-operator) by Algorithm 2 each time a new implication is added, thus a
better worst case complexity as stated by Proposition 7.

Proposition 7. 1. Algorithm 2 computes the canonical direct basis issued from
the addition of a new implication B → x in a canonical direct basis Σ′

cd in
O(|S||Σ′

cd|
|B|+1).

Some Algorithmical Aspects Using the canonical Direct Implicationnal basis

111

Name: AddDirect

Input: A canonical direct basis Σ′
cd

A proper and Σ′
cd-minimal implication B → x

Output: The canonical direct basis (Σ′ ∪ {B → x})cd

begin

\ ∗ ∗ Initialisations ∗ ∗ \
Left= {C → e ∈ Σ′

cd : e ∈ B and x 6∈ C}
Right= {A → d ∈ Σ′

cd : x ∈ A and d 6∈ B}
newImpl= ∅ ; LeftSet= {(∅, ∅)}
repeat

foreach (P, S) ∈ LeftSet do

\ ∗ ∗ Make-direct treatement T4 according to LeftSet ∗ ∗ \
add P ∪ B\S → x to newImpl

foreach A → d ∈ Right do add P ∪B\S∪A\(S +x) → d to newImpl

\ ∗ ∗ Updating of LeftSet for the next iteration ∗ ∗ \
delete (P, S) from LeftSet
foreach C → e ∈ Left do

if C 6⊂ P and e 6∈ S and e 6∈ P then add (P ∪C, S + e) in LeftSet

until LeftSet 6= ∅;
\ ∗ ∗ Reduction treatment T5 according to newImpl ∗ ∗ \
foreach A → b ∈ newImpl do

if there exists C → b ∈ Σ′
cd such that A ⊂ C then delete C → b from Σ′

cd

if there exists C → b ∈ Σ′
cd such that C ⊂ A then delete A → b from

newImpl

return Σ′
cd∪ newImpl

end

Algorithm 2: Addition of an implication B → x in a canonical direct basis Σ′
cd

2. Algorithm 1 incrementally computes the canonical direct basis of an UIS
Σ = {Bi → xi : i ∈ [1, n]} in O(|S| 2|B1|∗...∗|Bn|).

Proof. 1. Initialisations are clearly in O(|Σ′
cd||S|). The reduction treatment is in

O(|Σ′
cd||S||newImpl|), and thus depends on newImpl that is generated by the

repeat loop. Each iteration k of this loop increases newImpl with at most |Right|∗
|LeftSet| ≤ |Σ′

cd||LeftSet| implications. So, to estimate newImpl, let us provide
a majoration of LeftSet.
At each iteration k, LeftSet contains a description of every set of k implications
{C1 → x1, . . . , Ck → xk} ⊆ Left for wich the make-direct treatment has to be
applied. Thus, at each iteration k, LeftSet described at most |Left|k ≤ |Σ′

cd|
k

implications, and newImpl is increased with at most |Σ′
cd|

k+1 implications. More-
over, one can also deduce that complexity of one iteration of the repeat loop is in
O(|S||Σ′

cd|
k).

The number of iterations can be majored by |B| since, as precised in Theorem 4,
conclusions of the implications described in LeftSet have to be different, and
included in B. Therefore a final complexity in

O(|S|(|Σ′
cd| + |Σ′

cd|
2 + . . . + |Σ′

cd|
|B|)) ≤ O(|S||Σ′

cd|
|B|+1) (17)

Karell Bertet CLA 2006

112

2. Complexity of Algorithm 1 is a direct consequence of complexity of Algorithm 2.

Therefore, Algorithm 1 would gives better results in practice than Bertet and
Nebut’s algorithm and Wild’s algorithm. Notice that better results would also be
obtained with an addition of the implications according to a decreased order on
the size of their premisse. A simple experimentation to compare the incremental
Algorithm 1 with the non-incremental algorithm described by Proposition 1 has
been realized, where UIS are randomly generated for |S| = 20 and 10 implica-

tionnal rules of premisse majorated by |S|
3

. Table 1 gives the number of rules
that have been added by the make-direct treatment before to be deleted by the
reduction treatment by each of the two algorithms. This number of rules corre-
sponds to the intermediary rules that are generated, thus a comparison between
these algorithms. It clearly appears that Algorithm 1 generates less intermediary
rules.

Canonical direct Basis 51 52 52 68 31 30 32

Incremental (Algorithm 1) 61 60 0 28 2 12 0

Non-incremental (Proposition 1) 961 447 709 2038 425 211 266

Table 1. number of rules of the canonical direct basis and number of rules intermediary
generated by each algorithm

5 Conclusion

This paper focuses on some algorithmical aspects of the canonical direct basis,
and proposes a new incremental generation algorithm of the canonical direct
basis from an UIS Σ = {Bi → xi : i ∈ [1, n]} in O(|S| 2|B1|∗...∗|Bn|). This
algorithm incrementally adds a new implication B → x in a canonical direct
basis Σ′

cd and then computes (Σ′
cd ∪ B → x)cd in O(|S||Σ||B|+1). This new

algorithm has better worst case complexity than existing algorithms. It has been
implemented in a Java class, and a first experimentation also give good results.

References

1. K. Bertet and B. Monjardet. The multiple facets of the canonical implicationnal
basis. In Les cahiers du CAMS. 2005.

2. K. Bertet and M. Nebut. Efficient algorithms on the Moore family associated to
an implicational system. DMTCS, 6(2), 2004.

3. G. Birkhoff and O. Frink. Representations of lattices by sets. Transactions of the

American Mathematical Society, 64:299–316, 1948.
4. N. Caspard and B. Monjardet. The lattice of closure systems, closure operators

and implicational systems on a finite set: a survey. Discrete Applied Mathematics,
127(2):241–269, 2003.

Some Algorithmical Aspects Using the canonical Direct Implicationnal basis

113

5. M.L. Fredman and L. Khachiyan. On the complexity of dualization of monotone
disjunctive normal forms. Journal of Algorithms, 21:618–628, 1996.

6. B. Ganter. Two basic algorithms in concept lattices. Technical report, Technische
Hochschule Darmstadt, 1984.

7. B. Ganter and R. Wille. Formal concept analysis, Mathematical foundations.
Springer Verlag, Berlin, 1999.

8. J.L. Guigues and V. Duquenne. Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Mathematiques & Sciences Humaines,
95:5–18, 1986.

9. D. Maier. The Theory of Relational Databases. Computer Sciences Press, 1983.
10. H. Mannila and K.J. Räihä. The design of relational databases. Addison-Wesley,

1992.
11. L. Nourine. Une structuration algorithmique de la théorie des treillis. PhD thesis,

Université of Montpellier I, July 2000.
12. L. Nourine and O. Raynaud. A fast algorithm for building lattices. Information

Processing Letters, 71:199–204, 1999.
13. S. Obiedkov and V. Duquenne. Incremental construction of the canonical implica-

tion basis. In Fourth International Conference Journées de l’Informatique Messine,
pages 15–23, 2003. submitted to Discrete Applied Mathematics.

14. A. Rush and R. Wille. Knowledge spaces and formal concept analysis. In H.H. Bock
and W. Polasek, editors, Data Analysis and Information Systems, pages 427–436,
Berlin, 1995. Springer Verlag.

15. R. Taouil and Y. Bastide. Computing proper implications. In 9th International

Conference on Conceptual Structures, Stanford, USA, 2002.
16. M. Wild. A theory of finite closure spaces based on implications. Advances in

Mathematics, 108(1):118–139, 1994.
17. M. Wild. Computations with finite closure systems and implications. In Proceed-

ings of the 1st Annual International Conference on Computing and Combinatorics,
volume 959 of LNCS, pages 111–120. Springer, 1995.

Karell Bertet CLA 2006

114

