
Input: a set T of FAIs over Y , a fuzzy set M ∈ LY of attributes,
and a flag PCLOSED ∈ {false, true}

Output: clT∗(M) if PCLOSED = true, or clT(M) if PCLOSED = false

Initialization:

1 NEWDEP := M
2 for each A ⇒ B ∈ T :
3 if A = ∅:
4 NEWDEP := NEWDEP ∪ B
5 else :
6 COUNT [A ⇒ B] := |A|
7 CARD [A ⇒ B] := card(A)
8 for each 〈y, a〉 ∈ A:
9 add A ⇒ B to LIST [y]

10 DEGREE [y][A ⇒ B] := a
11 SKIP [y][A ⇒ B] := false

12 UPDATE := NEWDEP

13 CARDND := card(NEWDEP)
14 WAITLIST := ()

Computation:

15 while UPDATE 6= ∅:
16 choose 〈y, a〉 ∈ UPDATE

17 UPDATE := UPDATE − {〈y, a〉}
18 for each A ⇒ B ∈ LIST [y] such that

SKIP [y][A ⇒ B] = false and DEGREE [y][A ⇒ B] ≤ a:
19 SKIP [y][A ⇒ B] = true

20 COUNT [A ⇒ B] := COUNT [A ⇒ B] − 1
21 if COUNT [A ⇒ B] = 0 and

(PCLOSED = false or CARD [A ⇒ B] < CARDND):
22 ADD := B ⊖ NEWDEP

23 CARDND := CARDND +
P

〈y,a〉∈ADD

ą

fL(a) − fL(NEWDEP(y))
ć

24 NEWDEP := NEWDEP ∪ ADD

25 UPDATE := UPDATE ∪ ADD

26 if PCLOSED = true and ADD 6= ∅:
27 while WAITLIST 6= ():
28 choose B ∈ WAITLIST

29 remove B from WAITLIST

30 ADD := B ⊖ NEWDEP

31 CARDND := CARDND +
P

〈y,a〉∈ADD

ą

fL(a) − fL(NEWDEP(y))
ć

32 NEWDEP := NEWDEP ∪ ADD

33 UPDATE := UPDATE ∪ ADD

34 if COUNT [A ⇒ B] = 0 and PCLOSED = true and

CARD [A ⇒ B] = CARDND :
35 add B to WAITLIST

36 return NEWDEP

Fig. 1. Graded LinClosure
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〈2, 0.6, {0.4/a, 0.2/d}⇒{0.2/e}〉

〈2, 0.4, {0.2/d, 0.2/e}⇒{0.6/c, 0.5/d, 0.5/e}〉

〈3, 1.3, {0.5/c, 0.4/d, 0.4/e}⇒{0.8/a, b}〉

〈2, 1.1, {b, 0.1/e}⇒{0.8/c, d, 0.6/e}〉

〈2, 2, {b, c}⇒{d, e}〉

a :

b :

c :

d :

e :

Fig. 2. T -structure encompassing LIST , SKIP , DEGREE , COUNT , and CARD

and does not depend on the length of the input). In the second part (computa-
tion), each graded attribute 〈y, a〉 is considered at most once for update. Thus,
using analogous arguments as in case of the original LinClosure [17], we get
that GLinClosure works with asymptotic time complexity O(n). Needless to
say, the time complexity of an implementation of GLinClosure depends of our
choice of data structures, see Section 4 for further comments.

Remark 4. If L (our structure of truth degrees) is a two-element Boolean algebra,
i.e. if L = {0, 1}, GLinClosure with PCLOSED set to false produces the same
results as LinClosure [17] (the only difference is that our algorithm allows
also for FAIs of the form {} ⇒ B whereas the original LinClosure does not).
From this point of view, GLinClosure is a generalization of LinClosure.
GLinClosure is more versatile (even in crisp case): GLinClosure can be used
to compute pseudo-intents (and thus a non-redundant basis of data tables with
fuzzy attributes) which cannot be done with the original LinClosure (without
additional modifications).

4 Implementation Details, Examples, and Remarks

As mentioned before, the efficiency of an implementation of GLinClosure is
closely connected with data structures. The information contained in LIST ,
SKIP , DEGREE , COUNT , and CARD can be stored in a single efficient data
structure. This structure, called a T -structure, is a particular attribute-indexed
vector of lists of pointers to structures carrying values from COUNT and CARD .
We illustrate the construction of a T -structure by an example. Consider a set T
of FAIs which consists of the following fuzzy attribute implications:

ϕ1: {}⇒{0.4/a, 0.1/d}, ϕ4: {
0.5/c, 0.4/d, 0.4/e}⇒{0.8/a, b},

ϕ2: {
0.4/a, 0.2/d}⇒{0.2/e}, ϕ5: {b,

0.1/e}⇒{0.8/c, d, 0.6/e},

ϕ3: {
0.2/d, 0.2/e}⇒{0.6/c, 0.5/d, 0.5/e}, ϕ6: {b, c}⇒{d, e}.

Since ϕ1 is of the form {} ⇒ B, its right-hand side is added to NEWDEP

and the implication itself is not contained in LIST and other structures. The
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other formulas, i.e. ϕ2, . . . , ϕ6, are used to build a new T -structure which is de-
picted in Fig. 2. The T -structure can be seen as consisting of two main parts.
First, a set of records encompassing information about the FAIs, COUNT , and
CARD . For each FAI ϕi, we have a single record, called a T -record, of the
form 〈COUNT [ϕi],CARD [ϕi], ϕi〉, see Fig. 2 (right). Hence, this part of the T -
structure also carries information from LIST . Second, an attribute-indexed vec-
tor of lists containing truth degrees and pointers to T -records, see Fig. 2 (left).
A list which is indexed by attribute y ∈ Y will be called a y-list. The aim of
this part of the structure is to keep information about the occurrence of graded
attributes that appear in left-hand sides of FAIs from T . In more detail, a y-
list contains truth degree a ∈ L iff there is at lest one A ⇒ B ∈ T such that
0 6= A(y) = a. Moreover, if a y-list contains a as its element, then it is connected
via pointer to all T -records 〈m,n, C ⇒ D〉 such that C(y) = a. Because of the
computational efficiency, each y-list is sorted by truth degrees in the ascendant
manner. Note that pointers between elements of lists Fig. 2 (left) and T -records
Fig. 2 (right) represent information in SKIP (SKIP [y][A ⇒ B] = false means
that pointer from element A(y) of y-list to T -record of A ⇒ B is present). As
one can see, a T -structure can be constructed by a sequential updating of the
structure with time complexity O(kn). In the following examples, we will use
a convenient notation for writing T -structures which correspond in an obvious
way with graphs of the from of Fig. 2. For example, instead of Fig. 2, we write:

a : [(0.4, 〈2, 0.6, ϕ2〉)]
b : [(1, 〈2, 2, ϕ6〉, 〈2, 1.1, ϕ5〉)]
c : [(0.5, 〈3, 1.3, ϕ4〉), (1, 〈2, 2, ϕ6〉)]
d : [(0.2, 〈2, 0.4, ϕ3〉, 〈2, 0.6, ϕ2〉), (0.4, 〈3, 1.3, ϕ4〉)]
e : [(0.1, 〈2, 1.1, ϕ5〉), (0.2, 〈2, 0.4, ϕ3〉), (0.4, 〈3, 1.3, ϕ4〉)]

Example 1. Consider T which consists of ϕ1, . . . , ϕ6 as above in this section. Let
M = {0.2/d}, and PCLOSED = false. After the initialization (line 14 of the al-
gorithm), we have NEWDEP = {0.4/a, 0.2/d} and UPDATE = (〈a, 0.4〉, 〈d, 0.2〉).
Recall that during the update, values of COUNT and SKIP are changed. Namely,
values of COUNT may be decremented and values of SKIP are changed to true.
The latter update is represented by removing pointers from the T -structure. Af-
ter the update of 〈a, 0.4〉 and 〈d, 0.2〉, the T -record 〈0, 0.6, ϕ2 = {0.4/a, 0.2/d}⇒
{0.2/e}〉 of ϕ2 is processed because we have COUNT [ϕ2] = 0 (see the first item
of the T -record). At this point, the algorithm is in the following state:

b : [(1, 〈2, 2, ϕ6〉, 〈2, 1.1, ϕ5〉)] ADD = (〈e, 0.2〉)
c : [(0.5, 〈3, 1.3, ϕ4〉), (1, 〈2, 2, ϕ6〉)] NEWDEP = {0.4/a, 0.2/d, 0.2/e}
d : [(0.4, 〈3, 1.3, ϕ4〉)] UPDATE = (〈e, 0.2〉)
e : [(0.1, 〈2, 1.1, ϕ5〉), (0.2, 〈1, 0.4, ϕ3〉), (0.4, 〈3, 1.3, ϕ4〉)]

As a further step of the computation, an update of 〈e, 0.2〉 is performed and then
the T -record 〈0, 0.4, ϕ3 = {0.2/d, 0.2/e}⇒{0.6/c, 0.5/d, 0.5/e}〉 of ϕ3 is processed:

b : [(1, 〈2, 2, ϕ6〉, 〈1, 1.1, ϕ5〉)] ADD = (〈c, 0.6〉, 〈d, 0.5〉, 〈e, 0.5〉)
c : [(0.5, 〈3, 1.3, ϕ4〉), (1, 〈2, 2, ϕ6〉)] NEWDEP = {0.4/a, 0.6/c, 0.5/d, 0.5/e}
d : [(0.4, 〈3, 1.3, ϕ4〉)] UPDATE = (〈c, 0.6〉, 〈d, 0.5〉, 〈e, 0.5〉)
e : [(0.4, 〈3, 1.3, ϕ4〉)]

Graded LinClosure
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Right after the update of 〈c, 0.6〉, 〈d, 0.5〉, and 〈e, 0.5〉, the algorithm will process
the T -record of ϕ4. After that, we have the following situation:

b : [(1, 〈2, 2, ϕ6〉, 〈1, 1.1, ϕ5〉)] ADD = (〈a, 0.8〉, 〈b, 1〉)
c : [(1, 〈2, 2, ϕ6〉)] NEWDEP = {0.8/a, b, 0.6/c, 0.5/d, 0.5/e}

UPDATE = (〈a, 0.8〉, 〈b, 1〉)

Then, 〈a, 0.8〉 is updated. Notice that this update has no effect because the T -
structure no longer contains attributes of the form 〈a, x〉 waiting for update (the
a-list is empty). After the update of 〈b, 1〉, the T -record 〈0, 1.1, ϕ5 = {b, 0.1/e}⇒
{0.8/c, d, 0.6/e}〉 of ϕ5 is processed. We arrive to:

c : [(1, 〈1, 2, ϕ6〉)] ADD = (〈c, 0.8〉, 〈d, 1〉, 〈e, 0.6〉)
NEWDEP = {0.8/a, b, 0.8/c, d, 0.6/e}
UPDATE = (〈c, 0.8〉, 〈d, 1〉, 〈e, 0.6〉)

The algorithm updates 〈c, 0.8〉, 〈d, 1〉, 〈e, 0.6〉 however such updates are all with-
out any effect because the d-list and e-list are already empty, and the c-list
contains a single record with 1 � 0.8 (see the condition at line 18 of the algo-
rithm). Thus, the T -structure remains unchanged, UPDATE is empty, and the
procedure stops returning the value of NEWDEP which is {0.8/a, b, 0.8/c, d, 0.6/e}.

Example 2. In this example we demonstrate the role of the WAITLIST . Let T
be a set of FAIs which consists of

ψ1: {
0.2/a}⇒{0.6/a, 0.3/c}, ψ3: {

0.6/a, 0.3/c}⇒{b},

ψ2: {
0.3/c}⇒{0.2/b}, ψ4: {

0.6/a, b, 0.3/c}⇒{d}.

Moreover, we consider M = {0.3/a} and PCLOSED = true. After the initializa-
tion (line 14), we have NEWDEP = {0.3/a}, CARDND = 0.3 (fL is identity),
UPDATE = (〈a, 0.3〉), WAITLIST = (), and the T -structure is the following:

a : [(0.2, 〈1, 0.2, ψ1〉), (0.6, 〈3, 1.9, ψ4〉, 〈2, 0.9, ψ3〉)]
b : [(1, 〈3, 1.9, ψ4〉)]
c : [(0.3, 〈3, 1.9, ψ4〉, 〈2, 0.9, ψ3〉, 〈1, 0.3, ψ2〉)]

The computation continues with the update of 〈a, 0.3〉. During that, the T -
record 〈1, 0.2, ψ1〉 will be updated to 〈0, 0.2, ψ1〉. Since CARD [ψ1] = 0.2 < 0.3 =
CARDND , the left-hand side of ψ1 is strictly contained in NEWDEP , and the
algorithm processes 〈0, 0.2, ψ1 = {0.2/a}⇒{0.6/a, 0.3/c}〉, i.e. we get to

a : [(0.6, 〈3, 1.9, ψ4〉, 〈2, 0.9, ψ3〉)] ADD = (〈a, 0.6〉, 〈c, 0.3〉)
b : [(1, 〈3, 1.9, ψ4〉)] NEWDEP = {0.6/a, 0.3/c}
c : [(0.3, 〈3, 1.9, ψ4〉, 〈2, 0.9, ψ3〉, 〈1, 0.3, ψ2〉)] CARDND = 0.9

UPDATE = (〈a, 0.6〉, 〈c, 0.3〉)

After the update of 〈a, 0.6〉, we have:

b : [(1, 〈2, 1.9, ψ4〉)]
c : [(0.3, 〈2, 1.9, ψ4〉, 〈1, 0.9, ψ3〉, 〈1, 0.3, ψ2〉)]

Then, the algorithm continues with updating 〈c, 0.3〉. The T -record 〈2, 1.9, ψ4〉
is updated to 〈1, 1.9, ψ4〉 and removed from the c-list. In the next step, the T -
record 〈1, 0.9, ψ3〉 is updated to 〈0, 0.9, ψ3〉. At this point, we have CARD [ψ3] =
0.9 = CARDND , i.e. we add fuzzy set {b} of attributes (the right-hand side of
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ψ3) to the WAITLIST . Finally, 〈1, 0.3, ψ2〉 is updated to 〈0, 0.3, ψ2〉 which yields
the following situation: the T -structure consists of b : [(1, 〈1, 1.9, ψ4〉)], ADD =
(〈b, 0.2〉), NEWDEP = {0.6/a, 0.2/b, 0.3/c}, CARDND = 1.1, and UPDATE =
(〈b, 0.2〉). Since ADD is nonempty, the algorithm continues with flushing the
WAITLIST (lines 25–33). After that, the new values are set to NEWDEP =
{0.6/a, b, 0.3/c}, CARDND = 1.9, and UPDATE = (〈b, 0.2〉, 〈b, 1〉). The pro-
cess continues with updating 〈b, 0.2〉 (no effect) and 〈b, 1〉. Here again, we are
in a situation where CARD [ψ4] = 1.9 = CARDND , i.e. {d} is added to the
WAITLIST , only this time, the computation ends because UPDATE is empty,
i.e. {d} will not be added to NEWDEP . Thus, the resulting value being returned
is {0.6/a, b, 0.3/c}.

5 Conclusions

We have shown an extended version of the LinClosure algorithm, so-called
Graded LinClosure (GLinClosure). Our algorithm can be used in case of
graded as well as binary attributes. Even for binary attributes, GLinClosure

is more versatile than the original LinClosure (it can be used to compute
systems of pseudo-intents) but it has the same asymptotic complexity O(n).
Future research will focus on further algorithms for formal concept analysis of
data with fuzzy attributes.
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Abstract. When tackling real-life datasets, it is common to face the
existence of scrambled missing values within data. Considered as ”dirty
data”, usually it is removed during a pre-processing step. Starting from
the fact that ”making up this missing data is better than throwing out
it away”, we present a new approach trying to complete missing data.
The main singularity of the introduced approach is that it sheds light
on a fruitful synergy between generic basis of association rules and the
topic of missing values handling. In fact, beyond interesting compactness
rate, such generic association rules make it possible to get a considerable
reduction of conflicts during the completion step. A new metric called
”Robustness” is also introduced, and aims to select the robust association
rule for the completion of a missing value whenever a conflict appears.
Carried out experiments on benchmark datasets confirm the soundness
of our approach. Thus, it reduces conflict during the completion step
while offering a high percentage of correct completion accuracy.
Keywords: Data mining, Formal Concept Analysis, generic association
rule bases, missing values completion.

1 Introduction

In recent times, the field of Knowledge Discovery in Databases (KDD) has
emerged as a new research discipline, lying at the crossroads of statistics, machine
learning, data management, and other areas. The central step within the overall
KDD process is Data mining — the application of computational techniques to
the task of finding patterns and models in data. Implicitly, such knowledge is
supposed to be mined from ”high” quality data. However, most real-life datasets
encompass missing data, that is commonly considered as withdrawable during
the KDD pre-processing step.

Thus, setting up robust mining algorithms handling ”dirty” data is a com-
pelling and thriving issue to be addressed towards knowledge quality improve-
ment. In this respect, a review of the dedicated literature pointed out a de-
termined effort from the Statistics community. This is reflected by the wealthy
harvest of works addressing the completing missing value issue, e.g., Gibbs sam-
pling [7, 14], the Expectation Maximization [9] and Bound and Collapse [17] —
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to cite but a few. Based on the missing information principle [12], i.e., the value
for replacement is one of the existing data, the use of association rules seemed
to be a promising issue [4, 10, 15, 21]. The driving idea is that association rules
ideally describe conditional expectation of the missing values according to the
observed data catched out by their premise parts. Within based association rule
approaches, we shall mention those that present a robust itemset support count-
ing procedure, i.e., without throwing out missing data. They are based on pio-
neering works of [11, 16] and those that proceed by acquiring knowledge under
incompleteness [18, 19]. The main difference between approaches presenting a
completion process stands in the way of tackling the conflict problem, i.e., when
many values are candidates for the completion of a missing data. In addition,
the inherent oversized lists of association rules that can be drawn is a key factor
in hampering the efficiency of heuristics used to address the conflict problem.

In this paper, we propose a new approach, called GBARMV C , aiming to com-
plete missing values based on generic basis of association rules. In fact, beyond
interesting compactness rate, the use of such generic association rules proved to
be fruitful towards efficiently tackling the conflict problem. In addition, a new
metric called ”Robustness” is introduced and aims to select the robust rule for
the completion of a missing value whenever a conflict appears. Conducted ex-
periments on benchmark datasets show a high percentage of correct completion
accuracy.

The remainder of the paper is organized as follows. Section 2 sketches a
thorough study of the related work to the completion of missing values using
association rules. In Section 3, we introduce the GBARMV C approach for com-
pleting missing values based on generic basis of association rules. Experimental
results showing the soundness of our approach are presented in section 4. Finally,
we conclude and outline avenues of future work.

2 Basic definitions and related work
In this section, we present the general framework for the derivation of association
rules and the related work dealing with the completion of missing values using
the association rule technique.

2.1 Association Rules

Complete - Incomplete context: A table D is a non-empty finite set of tuples
(or transactions), where each tuple T is characterized by a non-empty finite set
of attributes, denoted by I. Each attribute Xi is associated to a domain, denoted
dom(Xi), which defines the set of possible values for Xi. It may happen that
some attribute values for a tuple are missing. A context with missing values is
called incomplete context, otherwise, it is said to be complete. In the sequel, we
denote a missing value by ”?”.
Extraction context: An extraction context is a triplet K = (O, I,R), where O
represents a finite set of transactions, I is a finite set of items and R is a binary
(incidence) relation (i.e., R ⊆ O×I). Each couple (o, i) ∈ R expresses that the
transaction o ∈ O contains the item i ∈ I.
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Example 1. Let us consider the complete context depicted by Figure 1 (Left).
This context is defined by 4 attributes X1, X2, X3 and X4, such that dom(X1) =
{A,B}, dom(X2) = {C, D}, dom(X3) = {E,F, G} and dom(X4) = {H, I}. The
associated extraction context is depicted in Figure 1 (Center), where each couple
(attribute, value) is mapped to an item. Figure 1 (Right) represents the extrac-
tion context in which missing values were randomly introduced. It is important
to mention that each missing value indicates the presence of one item among the
missing ones.

The formalization of the association rule extraction problem was introduced by
Agrawal et al. [1]. Association rule derivation is achieved from a set FIK of
frequent itemsets [2].
Frequent itemset: The support of an itemset I is the percentage of transac-
tions containing I. The support of I, denoted supp(I), is defined as supp(I) =
|{o∈O|I⊆o}|

|O| . I is said to be frequent if Supp(I) is greater than or equal to a user-

specified minimum support, denoted minsup.
Association rule: An association rule R is a relation between itemsets of the
form R : X ⇒ (Y -X), in which X and Y are frequent itemsets, and X ⊂ Y . Item-
sets X and (Y -X) are called, respectively, premise and conclusion of the rule R.

Valid association rules are those whose confidence measure, Conf(R)= Supp(Y )
Supp(X) ,

is greater than or equal to a minimal threshold of confidence denoted minconf.
If Conf(R)=1, then R is called exact association rule, otherwise it is called ap-
proximative association rule [13]. Even though support and confidence metrics
are commonly used to assess association rule validity, the lift metric [6] is be-
coming wider of use. In fact, this statistical metric, presenting a finer assessment
of the correlation between the premise and the conclusion parts, is defined as

follows: Lift(R)= Supp(Y )
Supp(X)×Supp(Y −X) . Nevertheless, in practice, the number of

valid association rules is very high. To palliate this problem, several solutions
towards a lossless reduction were proposed. They mainly consist in extracting an
informative reduced subset of association rules, commonly called generic basis.

X1 X2 X3 X4

1 A C E H

2 B C E I

3 A C E H

4 A D F I

5 B C F I

6 B C F H

7 A D G I

8 B D G I

A B C D E F G H I

1 × × × ×
2 × × × ×
3 × × × ×
4 × × × ×
5 × × × ×
6 × × × ×
7 × × × ×
8 × × × ×

A B C D E F G H I

1 × × × ×
2 × × × ×
3 × × ? ? ? ×
4 × × × ? ?

5 × × × ×
6 ? ? × × ×
7 × × × ×
8 × ? ? × ×

Fig. 1. Left: Extraction complete context K. Center: The associated complete trans-
actional mapping. Right: Extraction incomplete context.
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2.2 Related work

The intuition behind the association rules based approches for completing miss-
ing values, is that association rules describe a dependency among data including
missing ones. Hence, it should be possible to guess these values by exploiting
discovered rules [21]. Interestingly enough, all these approaches can be split into
two pools. With respect to Table 1, the first pool approaches begin by discarding
missing data. Then, they try to complete missing ones where association rules
discovered from only complete data, are of use. However, such approaches may
lead to biased results, since such rules were discovered from a misleading data,
which considerably affects the efficiency of the completion process [19]. Start-
ing from the fact that ”making up missing data is better than throwing out it
away”, approaches of a second pool were proposed. Such approaches focus on
mining knowledge under incompleteness. Unfortunately, these approaches suffer
from the handling prohibitive number of rules generated from frequent item-
sets. As a result, conflict between rules will be difficult to manage and leads
to an inefficient completion process. To palliate such drawback, we propose a
new approach based on the use of generic basis of association rules, that aims
to complete missing values and reduce conflict during the completion step. In
addition, our proposed approach falls within the second pool since it does not
discard missing data.

Pool 1 Pool 2

Approach 1 Approach 2 Approach 3 Approach 4
[4] [10] [15] [21]

Knowledge Discovery No No Yes Yes
under

incompleteness

Conflict - reducing conclusion Score-VM [15] Score [21]
resolution part’s rule J-Measure [20]

Generation of relevant frequent frequent frequent
rules maximal itemsets itemsets itemsets

based on rectangles

Table 1. Characteristics of the surveyed approaches dealing with missing values com-
pletion.

3 The GBARMVC approach

The limitations of the above surveyed approaches motivate us to propose a new
approach mainly based on the use of generic basis of association rules. The main
motivation is that such generic rules consists in a reduced subset of association
rules, i.e., fulfills the compactness property. As pointed out in [3], defining generic
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association rules relies on the Closure operator and the key notion of minimal
generator [13]. Thus, before introducing the completion approach, we shall show
how these key notions are redefined in the case of incomplete context.

3.1 Basic definitions

Certain transaction : A transaction T is said to be Certain, with respect to an
itemset X, denoted Certain(X), if T contains X. The set of Certain transactions
is defined as follows :

Certain(X) = {T ∈ D | ∀ i ∈ X i is present in T}.

Probable transaction : A transaction T is said to be Probable, with respect
to an item i, denoted Probable(i), if i is missing in T .
Probably transaction : A transaction T is said to be Probably with respect to
an itemset (Xi) if T contains X, such that T is Probable(i). The set of Probably
transactions relatively to an itemset (Xi), denoted Probably(X, i) is as follows:
Probably(X, i) = {T ∈ D |T ∈ Certain(X) ∩ Probable(i)}.

Example 2. With respect to the incomplete context depicted by Figure 1 (Right).
Transaction T3 is considered as Certain(AC), since it contains AC and it is
Probable(E) since E is missing. Transaction T3 is then considered as Probably(AC, E).

In what follows, we recall the definition of the Almost-Closure operator [5].

Definition 1. (Almost-Closure) The Almost-Closure operator of an itemset
X, denoted AC(X), is defined as AC(X) = X∪{i | i ∈ I ∧ supp(X)−supp(Xi) ≤
δ} where supp(X) is the absolute support defined as supp(X) = |Certain(X)|
and δ is a positive integer representing the number of exceptions.

This Definition points out that when an item i ∈ AC(X), then that it is to say
that this item is present in all transactions containing X with a bounded number
of exceptions less than δ.

Example 3. Let us consider the complete context depicted by Figure 1 (Center).
With respect to Definition 1, we have AC(AC) = ACEH with δ = 0, i.e., E

and H exist in all transactions containing AC.

It is noteworthy that the Almost-Closure operator overlaps with that of Closure
operator in a complete context for δ = 0 [5]. The Almost-Closure was redefined to
compute the δ-free sets1 from an incomplete context [19]. We use this definition
to introduce a minimal generator in an incomplete context. Then, we prove
that with δ = 0, the Almost-Closure does no longer correspond to the Closure
operator like in a complete context. For this reason, in the remainder, we shall
employ the Pseudo-Closure term to point out this distinction.

Definition 2. (Pseudo-Closure) The Pseudo-Closure of an itemset X in an
incomplete context, denoted PC(X), is defined as follows:

1 A 0-free-set is also called minimal generator [5].
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PC(X) = X ∪ {i | i ∈ I ∧ supp(X) − supp(Xi) = |Probably(X, i)| }.

The idea of the Pseudo-Closure operator is to adopt an optimistic strategy.
This involves a consideration of transactions containing X in which i is missing
(Probably(X, i)). These transactions are considered as transactions containing
the item i.

Example 4. Let us consider the incomplete context depicted by Figure 1 (Right).
We have supp(AC) − supp(ACH) = 0 which is equal to |Probably(AC, H)|.
Moreover, we have supp(AC)− supp(ACE) = 1 which represents the number of
the transactions Probably(AC, E). Hence, PC(AC) = ACEH.

Definition 3. (Minimal generator in an incomplete context) An itemset
g is said to be minimal generator in an incomplete context if it is not included
in the Pseudo-Closure of any of its subsets of size |g| − 1.

Proposition 1. The Pseudo-closure in an incomplete context is not a Closure
operator.

Proof. By fulfilling the extensivity property, the Closure operator induces that
each minimal generator and its associated Pseudo-closed itemset have the same
support value. However, the Pseudo-closure adopts an optimistic strategy as pre-
sented in [19]. When computing the Pseudo-closure of an itemset X, if an item
is missing, then it is considered as present. Thus, the minimal generator and its
Pseudo-closed itemset do not necessarily have the same support value. Conse-
quently, the Pseudo-closure in an incomplete context is not a Closure operator.
¥

In what follows, we adapt the definition of the generic basis of exact asso-
ciation rules introduced in [3] to an incomplete context. Such rules allow the
selection of a generic subset of all association rules. Thus, the minimal set of
rules is used for completing missing values, since it reduces conflict between
rules during the completion step.

Definition 4. (Generic basis of pseudo-exact association rules) Let FPC

be the set of frequent Pseudo-closed itemsets extracted from an incomplete con-
text. For each frequent Pseudo-closed itemset c ∈ FPC, let MGc be the set of
its minimal generators. The generic basis of pseudo-exact association rules GB

is defined as:

GB = {R : g ⇒ (c - g) | c ∈ FPC and g ∈ MGc and g 6= c(2)}.

For the completion of the missing values, we use generic rules of the form
premise ⇒ (Xi, vi), where premise is a conjunction of elements of the form
(Xj , vj), i 6= j where (Xj , vj) is considered as an item.

2 The condition g 6= c ensures discarding rules of the form g ⇒ ∅.
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3.2 The missing values completion GBARMV C

In the remainder, we present a missing value completion approach called GBARMV C
3.

This approach is based on the one hand, extracting the generic basis of pseudo-
exact association rules from an incomplete context. On the other hand, we pro-
vide a new metric called Robustness that aims to select the robust rule for the
completion of a missing value whenever a conflict appears. This new metric eval-
uates the degree of correlation between the premise and the conclusion of a rule
materialized through the Lift measure [6] and it introduces the degree of as-
sessment of the incomplete transaction. This assessment is materialized through
the Matching measure. Below, we recall the notion of consistently interpreting
a transaction by a rule [21] and we provide the definitions of the Matching and
Robustness metrics.
Consistently interpreting [21]: A rule R : premise ⇒ (Xi, vi) is said to be
consistently interpreting a transaction T presenting a missing value in the at-
tribute Xi, if there is no element (Xj , vj) in the premise of R that differs from
the existing value of Xj in T .

Definition 5. The Matching measure of a rule R : premise ⇒ (Xi, vi) with
an incomplete transaction T is defined as follows :

Matching(R, t) =

{

0 if R is not consistently interpreting T
∑

matched(Xj ,vj)
number of attributes

otherwise.

where

matched(Xj , vj)=

{

0 if Xi presents a missing value in T

1 otherwise.

Example 5. Let us consider transaction T6: (X1, ?)(X2, C)(X3, F )(X4,H). Rule
R1 : (X2,D)(X3, F ) ⇒ (X1, A) does not consistently interpret T6, since the
value of the attribute X2 for T6 is C, which is different from the value D related
to attribute X2 in the rule R1. Thus, Matching(R1, T6) = 0. However, if we
consider the example of R2 : (X2, C)(X3, F ) ⇒ (X1, B), we can affirm that
Matching(R2, T6) = 1

2 since (X2, C) and (X3, F ) are present in T6.

The main idea of our proposed approach is to select a rule that maximizes both
the Lift and the Matching values. The Lift measure of a rule A ⇒ B is interesting
for the completion issue since it describes the strength of the correlation between
A and B, i.e., the presence of the item A indicates an increase of the item B.
The purpose of the Matching measure is to select the rule that corresponds
best to the incomplete transaction. For example, if the hair color of a person
is missing and we are faced by a conflict between these two rules: Bleu eyes ⇒
Blond hair and redheaded person ∧ clear skin ⇒ Red hair. Then, we tend to
use the second rule since it presents a maximum matching. This is performed
through the Robustness metric defined as follows:

3 The acronym GBARMV C stands for Generic Basis of Association Rules based ap-
proach for Missing Values Completion.
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Definition 6. The Robustness of an associative rule R for completing a missing
transaction T is defined as follows:

Robustness(R, T ) = Matching(R, T ) × Lift(R).

In the remainder, we present the GBARMV C algorithm, whose pseudo-code
is given by Algorithm 1. The main steps of GBARMV C algorithm are sketched
by the following sequence :

– For each missing attribute Xi of an incomplete transaction T , select rules
concluding on Xi and consistently interpreting T . We denote such rule set
by Rprobables(T,Xi) (lines 3-7).

– If the set Rprobables(T,Xi) is empty, then there is no rules permitting the
completion of Xi (lines 8-9).

– If all rules in Rprobables(T, Xi) conclude on the same value v, then v is used
to complete the missing attribute value (lines 11-12).

– Otherwise, i.e., Rprobables(T, Xi) leads to a conflict. Hence, we compute the
Robustness value for all rules belonging to Rprobables(T, Xi) (lines 14-18).

– The rule presenting the highest Robustness value is used to complete the
missing value on Xi (line 19).

4 Experimental results

It was worth the effort to experience in practice the potential benefits of the
proposed approach. Thus, we have implemented both GBARMV C and ARMV C

[21] approaches in the C++ language using gcc version 3.3.1. Experiments were
conducted on a Pentium IV PC with a 2.4 GHz and 512 MB of main memory,
running Red Hat Linux. The set of minimal generators and their associated
Pseudo-closed itemsets were extracted thanks to MVminer kindly provided by
F. Rioult. For these experiments, we consider a complete database to act as a
reference database, and we randomly introduce missing values per attribute with
the following different rates : 5%, 10%, 15% and 20%. Benchmark datasets used
for this experiments are from the UCI Machine Learning Repository4. Charac-
teristics of these datasets are depicted by Table 2. During these experiments, we
compared statistics yielded by GBARMV C vs those of ARMV C , by stressing on
the following metrics :

– The percentage of missing values that an approach permits to complete.
– The accuracy : the percentage of correctly completed missing values.

Table 3 sketches the variation of the completion percentage and the Accuracy
metric vs the percentage of the missing values variation of GBARMV C . From
the reported statistics, we remark that the variation of incrusted missing values
does not really affect the percentage of the completion. However, the higher
the percentage of the missing values is, the lower the obtained accuracy. This
decrease in of the percentage of the correctly completed missing values seems to
be legitimate and quite expectable. This result can be explained by the following:

4 http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Leila Ben Othman and Sadok Ben Yahia CLA 2006

92



Algorithm : GBARMV C1

Data: - KMV : Incomplete context
- GB : Generic basis of pseudo-exact association rules

Results: KVM completed
Begin2

Foreach incomplete transaction T in KMV do3

Foreach attribute Xi in T with a missing value do4

Foreach rule R in GB such that Xi appears in the conclusion5

do

If R consistently interpreting T then6

Rprobables(T, Xi) = Rprobables(T, Xi) ∪ R;7

If |Rprobables(T, Xi)| = 0 then8

Vcompletion = ∅;9

Else10

If Rprobables(T, Xi) concludes on the same value v then11

Vcompletion = v;12

Else13

max=0;14

Foreach rule r in Rprobables(T, Xi) do15

r.Robustness=r.Matching× r.Lift;16

If r.Robustness>max then17

Vcompletion=r.conclusion;18

T.Xi = Vcompletion;19

return (KVM completed);20

End21

Algorithm 1: GBARMV C algorithm

the higher the incrusted number of missing values is, the worse the extracted rule
quality. This fact considerably affects the Accuracy metric. Table 4 sketches the
variation of the completion percentage and the Accuracy metric vs the variation
of the minsup value. From Table 4, we can remak, as far as the minsup value
increases, the percentage of the completion diminishes. On the contrary, in most
cases by increasing the minsup value the accuracy value increases. In fact, rules
with a higher minsup permit an accurate completion since they describe a more
frequent expectation of the missing values according to the observed data. Table
5 sketches the statistics for the completion percentage and those of the Accuracy
values obtained by GBARMV C vs those pointed out by ARMV C for a minsup
value equal to 10%. For both approaches, as far as we lower the percentage
of missing values, the number of rules considered during the completion step
increases. However, those used by GBARMV C is by far less than the rules used
by ARMV C . A careful scrutinize of these statistics permits to shed light on the
following:
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Dataset Number of Number of Number of

transactions items attributes

Mushroom 8124 128 23

Zoo 101 56 28

Tic-tac-toe 958 58 29

House-votes 435 36 18

Monks2 432 38 19

Table 2. Dataset characteristics.

– Mushroom - House-Votes: For these datasets, the percentage of comple-
tion of ARMV C is better than GBARMV C . This result is not explained by
the reduced number of rules presented by GBARMV C . This is can be justi-
fied by the Score metric used by ARMV C . This metric allows the use of rules
on which all items in the premise part are missing. Such rules are not used
by GBARMV C . We considered them as non reliable for the completion.

– Zoo - Tic-tac-toe - Monks2 : In the contrary of the previous datasets,
we remark that GBARMV C has permitted a high percentage of completion
as well as ARMV C . This statement is observed even with the reduced num-
ber of rules of GBARMV C in comparison with rules of ARMV C . This fact
represents the advantage of GBARMV C , i.e., rules of GBARMV C are not
redundant.

– For all datasets, GBARMV C has permitted a better Accuracy. This better
Accuracy result can be justified as follows:
1. Rules produced by GBARMV C are more reliable in presence of missing

values. This is materialized thorough the Pseudo-Closure definition.
2. It was shown in [21] that the Accuracy depends on the number of the

extracted rules. However, ARMV C generates a large number of rules,
which affects considerably the completion Accuracy.

Finally, according to these experimental results, it should be mentioned that
GBARMV C presents a more accurate completion process. Moreover, this com-
pletion process is less affected by the rate of the introduced missing values than
ARMV C . This efficiency can be explained by the strategy adopted during the
completion step. In fact, based on generic bases of association rules, it permitted
a considerable reduction of conflicts, leading to high rate of correct completion
accuracy.

5 Conclusion and future work

In this paper, we proposed a new approach called GBARMV C , permitting the
completion of the missing values. The main particularity of our proposed ap-
proach is that is based on the generic basis of association rules and a new metric
called Robustness. Carried out experiments on benchmark datasets confirmed
that GBARMV C approach turns out to be very beneficial for resolving the chal-
lenge of completing missing values, specially at the pre-processing KDD step.
In fact, GBARMV C approach offers a high rate of correct completion accuracy
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Dataset Number Number Percentage Accuracy
of missing values(%) of rules of completion

05 028293 74% 99%
Mushroom 10 027988 76% 99%

15 027988 78% 97%
20 024410 80% 97%

05 824650 100% 97%
Zoo 10 756741 098% 89%

15 626390 100% 88%
20 547075 099% 88%

05 315094 100% 91%
Tic-tac-toe 10 296222 100% 89%

15 279915 100% 87%
20 266022 100% 60%

05 125909 91% 95%
House-votes 10 102310 93% 90%

15 094246 92% 87%
20 081162 92% 82%

05 028325 100% 83%
Monks2 10 025402 100% 65%

15 021790 100% 71%
20 019741 100% 63%

Table 3. Variation of the percentage of completion and the Accuracy metric of
GBARMV C vs the percentage of missing values variation for minsup value equal to
10%.
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Dataset minsup Percentage Accuracy
of completion

10% 80% 97%
15% 75% 98%

Mushroom 20% 71% 98%
25% 55% 73%
30% 53% 57%

10% 99% 88%
15% 96% 78%

Zoo 20% 92% 88%
25% 89% 92%
30% 88% 93%

10% 100% 060%
15% 100% 070%

Tic-tac-toe 20% 089% 085%
25% 086% 096%
30% 065% 100%

10% 92% 82%
15% 45% 90%

House-votes 20% 76% 79%
25% 70% 74%
30% 33% 50%

10% 100% 63%
15% 100% 63%

Monks2 20% 100% 75%
25% 100% 83%
30% 083% 92%

Table 4. Variation of the percentage of completion and the Accuracy metric of
GBARMV C vs the variation of the minsup value for a number of missing values equal
to 20%.
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Mushroom

Number of 05 10 15 20
missing values (%)

Percentage of completion 50% 92% 99% 80%
ARMV C Accuracy 42% 58% 64% 66%

Number of rules 79461 77161 76830 68168

Percentage of completion 74% 76% 78% 80%
GBARMV C Accuracy 99 % 99% 97% 97%

Number of rules 28893 27988 27988 24410

Zoo

Number of 05 10 15 20
missing values(%)

Percentage of completion 100% 100% 100% 100%
ARMV C Accuracy 55% 57% 55% 66%

Number of rules 3898169 3842627 3761081 3293571

Percentage of completion 100% 098% 100% 099%
GBARMV C Accuracy 97% 89% 88% 88%

Number of rules 0824650 0756741 0626390 0547075

Tic-tac-toe

Number of 05 10 15 20
missing values(%)

Percentage of completion 100% 100% 100% 100%
ARMV C Accuracy 86% 73% 76% 71%

Number of rules 632826 592115 554530 528343

Percentage of completion 100% 100% 100% 100%
GBARMV C Accuracy 91% 89% 87% 60%

Number of rules 315094 296222 279915 266022

House-votes

Number of 05 10 15 20
missing values (%)

Percentage of completion 95% 96% 97% 98%
ARMV C Accuracy 87% 77% 73% 71%

Number of rules 387342 369180 335639 309617

Percentage of completion 91% 93% 92% 92%
GBARMV C Accuracy 95% 90% 87% 82%

Number of rules 125909 102310 094246 081162

Monks

Number of 05 10 15 20
missing values (%)

Percentage of completion 100% 100% 100% 100%
ARMV C Accuracy 76% 67% 65% 60%

Number of rules 52660 45249 33815 34490

Percentage of completion 100% 100% 100% 100%
GBARMV C Accuracy 83% 65% 71% 63%

Number of rules 28325 25402 21790 19741

Table 5. Evaluation of the percentage of completion and the Accuracy metric of
ARMV C vs. GBARMV C for a minsup value equal to 10%.
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and outperforms the approach proposed in [21]. The preliminary obtained re-
sults offer exciting additional alternatives avenues of future work. In fact, we are
interested first, in tackling the ”silence problem”, i.e., improving the percentage
of completion. Second, it will be interesting to complete missing values by using
the concept of disjunction-free-sets [8]. These sets allow the extraction of gen-
eralized rules with negative terms which could be interesting for the completion
of missing values. Finally, our future work includes a further evaluation of the
Robustness metric.
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d’association pour la prédiction de valeurs manquantes. ARIMA journal, pages
103–124, November 2005.

11. M. Kryszkiewicz. Probabilistic approach to association rules in incomplete
databases. In: Proc. of Web-Age Information Management Conference (WAIM),
Shanghai, China, 2000. Lecture Notes in Computer Science, Vol. 1846. Springer-
Verlag (2000).

Leila Ben Othman and Sadok Ben Yahia CLA 2006

98



12. R. J.A. Little and D.B. Rubin. Statistical analysis with missing data. Wiley, New
York, 2002.

13. N. Pasquier, Y. Bastide, R. Touil, and L. Lakhal. Discovering frequent closed
itemsets. In C. Beeri and P. Buneman, editors, Proceedings of 7th International
Conference on Database Theory (ICDT’99), LNCS, volume 1540, Springer-Verlag,
Jerusalem, Israel, pages 398–416, 1999.

14. P.Giudici and R. Castelo. Improving Markov Chain Monte Carlo model search for
data mining. Machine Learning, 50(1–2):127–158, 2003.

15. A. Ragel. Exploration des bases incomplètes : Application à l’aide au pré-traitement
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