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Abstract. B. Ganter, R. Wille initiated formal concept analysis, con-
cept lattice is one of the main notions and tools, see [12]. Some researchers
have investigated the fuzzification of the classical crisp concept lattice.
In [1], from the point of view of fuzzy logic, R. Bĕlohlávek investigated
concept lattice in fuzzy setting. In [16, 17], S. Krajči studied generalized
concept lattice.
On the other hand, as a generalization of concept, in [15, 21, 22], Zhang,
P. Hitzler, Shen defined the notion of approximable concept on a Chu
space. In this paper, we introduce two generalizations of approximable
concept lattice: approximable concept lattice in the sense of R. Bĕlohlávek,
and generalized approximable concept in the sense of S. Krajči.
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1 Introduction

B. Ganter, R. Wille initiated formal concept analysis, which is an order-theoretical
analysis of scientific data. Concept lattice is one of the main notions and tools,
see [12]. Some researchers have investigated the fuzzification of the classical crisp
concept lattice. One is R. Bĕlohlávek’s work ([1]), which considers (L-)fuzzy sub-
sets of objects and (L-)fuzzy subsets of attributes. Another is S. Krajči’s work
([18]) which considers fuzzy subsets of attributes and ordinary/classical/crisp
subsets of objects. For more details, see [1, 5, 6, 7, 16, 17, 18].

As constructive models of linear logic, Barr and Seely brought Chu space to
light in computer science. V. Pratt also investigated Chu space in [19, etc.], and
Zhang, P. Hitzler, Shen discussed a special form of Chu space in [15, 21, 22].

From the study of domain theory, Zhang showed that a concept is not an
affirmable property([20]), see Example 2. As a generalization of concept, in [15,
21, 22], Zhang, P. Hitzler, Shen introduced the notion of approximable concept
on a Chu space. They obtained the equivalence between the category of formal
contexts with context morphisms, and the category of complete algebraic lattices
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with Scott continuous functions. For more results, including its applications in
data-mining and knowledge discovery, we refer to [21, 22].

In [8], we investigated the relation between approximable concept lattice and
formal topology (information base). Thus the connections between the four cate-
gories of Domain theory, Formal Concept Analysis, Formal topology, Information
System have been constructed in [8, 21, 22].

In this paper, we begin with an overview of algebraic lattices, L-sets, which
surveys Preliminaries. In Section 3, we introduce Zhang’s work. Then in Section
4, we discuss the equivalence between two definitions of approximable concept in
fuzzy setting. In the end, we investigate generalized approximable concept, and
show that generalized approximable concept lattices represent algebraic lattices.

2 Preliminaries

Let us recall some main notions needed in the paper. i.e., algebraic lattices,
L-sets. For the other notions, see [3, 13].

2.1 Algebraic Lattices

In [13], the notions of continuous lattice and algebraic lattice were introduced.
In the section, we recall some main definitions. For more details, see [13].

Let (P,≤,∨,∧, 0, 1) be a complete lattice. For D ⊆ P , D is called a directed
set, ∀x, y ∈ D, if there exists z ∈ D, such that x ≤ z, y ≤ z.

For x, y ∈ P , x is said to be way below y, denoted by x ≪ y, if for all directed
set D with y ≤ ∨D, there exists z ∈ D, such that x ≤ z. Let ⇓ x = {y | y ≪ x}.
(P,≤) is called a continuous lattice if for every x ∈ P , we have x = ∨ ⇓ x.

x ∈ P is called a compact element, if x ≪ x, which is equivalent to: for
all directed sets D with x ≤ ∨D, there exists z ∈ D, satisfying x ≤ z. Let
K(≪) = {x | x is compact }, K(≪) is not a complete lattice in general.

(P,≤) is called an algebraic lattice, if for every x ∈ P , there exists a directed
set Dx of compact elements, such that x = ∨Dx, that is to say,

x = ∨(↓ x ∩ K(≪)),
where ↓ x = {y | y ≤ x}.
In universal algebra, algebraic lattices have become familiar objects as lattices

of congruences and lattices of subalgebras of an algebra. Thus they have been
extensively studied, and applied in many areas, such that topological theory and
domain theory (see [11]). The role of algebraic completely lattice L-ordered sets
is analogous to the role of algebraic lattices in ordinary relational systems.

2.2 L-Sets

The notion of an L-set was introduced in ([14]), as a generalization of Zadeh’s
(classical) notion of a fuzzy set. An overview of the theory of L-sets and L-
relations (i.e., fuzzy sets and relations in the framework of complete residuated
lattices) can be found in [3]. Let us recall some main definitions.
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Definition 1. A residuated lattice is an algebra L= 〈L,∨,∧,⊗,→, 0, 1〉 such
that

(1) 〈L,∨,∧,⊗,→, 0, 1〉 is a lattice with the least element 0 and the greatest
element 1.

(2) 〈L,⊗, 1〉 is a commutative monoid, i.e., ⊗ is associative, commutative,
and it holds the identity a ⊗ 1 = a.

(3) ⊗,→ form an adjoint pair, i.e.,

x ⊗ y ≤ z iff x ≤ y → z holds for all x, y, z ∈ L.

Residuated lattice L is called complete if 〈L,∨,∧〉 is a complete lattice. In
this paper, we assume that L is complete.

The following properties of complete residuated lattices maybe needed in this
paper.

(1) a ≤ b ⇒ a → c ≥ b → c, (2) a ≤ b ⇒ c → a ≤ c → b,

(3) a ≤ b ⇒ a ⊗ c ≤ b ⊗ c, (4) a = 1 → a,

(5) a ⊗ b ≤ a ∧ b, (6) a ≤ (a → b) → b,

(7) a ⊗ (a → b) ≤ b, (8) a ⊗ (b → c) ≤ b → a ⊗ c,

(9) a ⊗
∧

i∈I

bi ≤
∧

i∈I

(a ⊗ bi), (10) (
∨

i∈I

ai) → b =
∧

i∈I

(ai → b),

(11) a →
∧

i∈I

bi =
∧

i∈I

(a → bi), (12) (a → b) ⊗ (b → c) ≤ (a → c).

As discussed in [3], several important algebras are special residuated lattices:
Boolean algebras, Heyting algebras, BL-algebras, MV-algebras, Girard monoids
and others.

For a universe set X, an L-set in X is a mapping A : X → L, A(x) indicates
that the truth degree of “x belongs to A”. We use the symbol LX to denote the
set of all L-sets in X. The concept of an L-relation is defined obviously, and the
truth degree to which elements x and y are related by an L-relation I is denoted
by I(x, y) or (xIy).

For a ∈ L, x ∈ X, {a/x} is defined as an L-set in X: {a/x}(x) = a,
{a/x}(y) = 0, if y 6= x.

A binary L-relation ≈ on X is an L-equality if it satisfies: ∀x, y, z ∈ X,
(x ≈ x) = 1(reflexivity), (x ≈ y) = (y ≈ x) (symmetry), (x ≈ y) ⊗ (y ≈ z) ≤
(x ≈ z)(transitivity), and (x ≈ y) = 1 implies x = y.

I ∈ LX×Y is a binary L-relation, and it is compatible with respect to ≈X and
≈Y if I(x1, y1)⊗ (x1 ≈X x2)⊗ (y1 ≈Y y2) ≤ I(x2, y2) for any xi ∈ X, yi ∈ Y (i =
1, 2). Analogously, A ∈ LX is compatible with respect to ≈X if A(x1)⊗ (x1 ≈X

x2) ≤ A(x2). An L-set A ∈ L〈X,≈〉 is called an ≈-singleton if there exists x0 ∈ X,
such that A(x) = (x ≈ x0) for any x ∈ X.

An L-order on X with an L-equality relation ≈ is a binary L-relation �
which is compatible with respect to ≈ and satisfies: ∀x, y, z ∈ X (x � x) =
1(reflexivity), (x � y) ∧ (y � x) ≤ (x ≈ y) (antisymmetry), (x � y) ⊗ (y � z) ≤
(x � z) (transitivity). A set X equipped with an L-order � and an L-equality
≈ is called an L-ordered set 〈〈X,≈〉,�〉.

These notions are generalizations of the classical notions. Indeed, if L=2,
L-order �, L-equality ≈ coincide with the classical order ≤ and equality =.
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For A,B ∈ LX , we define S(A,B) =
∧

x∈X

A(x) → B(x), (A ≈ B) =
∧

x∈X

A(x) ↔ B(x), and (A � B) = S(A,B), thus 〈〈LX ,≈〉,�〉 is an L-ordered

set, see Example 1. We write A ⊆ B, if S(A,B) = 1.
Example 1. This is [1] Example 6(1). For ∅ 6= M ⊆ LX , we obtain that

〈〈M,≈〉, S〉 is an L-ordered set. In fact, reflexivity and antisymmetry are triv-
ial, we have to prove transitivity and compatibility. Transitivity: S(A,B) ⊗
S(B,C) ≤ S(A,C) holds if and only if S(A,B) ⊗ S(B,C) ≤ A(x) → C(x), i.e.,
∀x ∈ X, A(x)⊗S(A,B)⊗S(B,C) ≤ C(x), and it is true since A(x)⊗S(A,B)⊗
S(B,C) ≤ A(x) ⊗ (A(x) → B(x)) ⊗ (B(x) → C(x)) ≤ C(x). In the similarly
way, we also prove Compatibility: S(A,B) ⊗ (A ≈ A

′

) ⊗ (B ≈ B
′

) ≤ S(A
′

, B
′

).
For S(A,B), Lemma 1 will be used in the paper, see [3].
Lemma 1. (1) S(A,

⋂

i∈I

Bi) =
∧

i∈I

S(A,Bi),

(2) A(x) ⊗ S(A,B) ≤ B(x).
Suppose X and Y are two sets with L-equalities ≈X and ≈Y , respectively.

An L-Galois connection ([1]) between 〈X,≈X〉 and 〈Y,≈Y 〉 is a pair 〈↑,↓ 〉 of
mappings ↑ : L〈X,≈X〉 → L〈Y,≈Y 〉, ↓ : L〈Y,≈Y 〉 → L〈X,≈X〉, and satisfying the
following conditions:

S(A1, A2) ≤ S(A↑
2
, A↑

1
), S(B1, B2) ≤ S(B↓

2
, B↓

1
),

A ⊆ A↑↓, and B ⊆ B↓↑ for any A,A1, A2 ∈ LX , B,B1, B2 ∈ LY .
A mapping C : LX → LY is an L-closure operator, if for A,B ∈ LX , we have
(1) A ⊆ C(A), (2) S(A,B) ≤ S(C(A), C(B)), and (3) C(C(A)) = C(A).

3 Approximable Concepts introduced by Zhang

As showed in Introduction, Zhang, P. Hitzler, Shen considered a special
form of Chu space in [15, 21, 22] as follows.

Definition 2. A Chu space P is a triple P = (Po, |=P , Pa), where Po is a
set of objects and Pa is a set of attributes. The satisfaction relation |=P is a
subset of Po × Pa. A mapping from a Chu space P = (Po, |=P , Pa) to a Chu
space Q = (Qo, |=Q, Qa) is a pair of functions (fa, fo) with fa : Pa → Qa and
fo : Qo → Po such that for any x ∈ Pa and y ∈ Qo, fo(y) |=P x iff y |=Q fa(x).

With respect to a Chu space P = (Po, |=P , Pa), two functions can be defined:
α : P(Po) → P(Pa) with X → {a | ∀x ∈ X x |=P a},
ω : P(Pa) → P(Po) with Y → {o | ∀y ∈ Y o |=P y}.
α, ω form a pair of Galois connection between P(Po) and P(Pa) ([13]).
A subset A ⊆ Pa is called an intent of a formal concept if it is a fixed point of

α◦ω, i.e., α(ω(A)) = A, in [21], A is also called a (formal) concept (of attributes).
If A is a concept, for every subset B ⊆ A, we have B ⊆ α(ω(B)) ⊆ α(ω(A)) =

A ([22]).
Dually, an extent of a formal concept, or a (formal) concept (of objects) also

defined in [22].
Zhang pointed out in [22] that in FCA, a Chu space is called a formal context,

but ”Chu” carries with it the notion of morphism, to form a category. On the
other hand, FCA provides the notion of concept, intrinsic to a Chu space.
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As a generalization of the notion of concept, Zhang and Shen introduced the
notion of approximable concept in [21], a subset A ⊆ Pa is an approximable
concept (of attributes) if for every finite subset X ⊆ A, we have α(ω(X)) ⊆ A.
Clearly, every concept is an approximable concept, but the converse is false ( see
Example 2).

Example 2 In [21], Zhang and Shen gave the following example, to show
an approximable concept is not a concept in general.

P ↑ t ↑ b ↑ ∗ ↑ 0 ↑ 1 ↑ 2 · · · ↑ −1 ↑ −2 · · ·
t × × × × × × · · · × × · · ·
b × · · · · · ·
* × × · · · · · ·
0 × × · · · × × · · ·
1 × × × · · · × × · · ·
...

...
...

...
...

...
...

...
-1 × · · · × × · · ·
-2 × · · · × · · ·
...

...
...

...
...

...
...

...

Given S = {b, · · · ,−2,−1, 0, 1, 2, · · · , t, ∗}, with the order b < · · · < −2 <
−1 < 0 < 1 < 2 < · · · < t, and b < ∗ < t. Then S is a complete lattice which is
not algebraic.

∀x ∈ S, let ↑ x = {y | x ≤ y}, × indicates that y ∈↑ x, we obtain a Chu
space as follows.

Pa = {↑ x | x ∈ S}, Po = {x | x ∈ S}, x |=↑ y, if x ∈↑ y, then P = (Po, |=
, Pa) is a Chu space.

(1) {↑ i | i ≤ 0, or i ≥ 0} ∪ {↑ b} is an approximable concept, not a concept.
(2) Clearly ∗ ∈ α(ω({↑ i | i ≥ 0})), and but for any finite subset X of

{↑ i | i ≥ 0}, we have ∗ 6∈ α(ω(X)). {↑ i | i ≥ 0} is a family of concept.

4 Approximable Concepts in Fuzzy Setting

In [1, 5], suppose X and Y are two sets with L-equalities ≈X and ≈Y ,
respectively; I an L-relation between X and Y which is compatible with respect
to ≈X and ≈Y . A pair 〈↑,↓ 〉 of mappings was defined as:

↑ : LX → LY , for A ∈ LX , A↑(y) =
∧

x∈X

A(x) → I(x, y).

and ↓ : LY → LX , for B ∈ LY , B↓(x) =
∧

y∈Y

B(y) → I(x, y).

Then 〈X, Y, I〉 is a formal L-context; 〈A,B〉 is a concept in fuzzy setting, if
A = A↑↓, B = B↓↑. That is, A is an extent of a concept, B is an intent of a
concept; or A is a concept of objects, B is a concept of attributes. β(X, Y, I) =
{〈A,B〉 | 〈A,B〉 is a concept } is a formal concept lattice.

Generalizations of Approximation Concept
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As a generalization, we introduced the notion of an approximable concept in
fuzzy setting ([9]). According to the reviewer’s suggestion, there exist two choices
for the definition of an approximable concept. We adopted one kind (Definition
4) in [9]. In the section, we discuses the other kind (Definition 5), and prove the
equivalence between the two definitions.

Given two L-ordered sets (X,≈X), (Y,≈Y ), and I is an L-relation. Let Po =
(X,≈X), Pa = (Y,≈Y ), and |= induced by the L-relation I, that is to say,
(x |= y) = (xIy). We obtain a Chu space P = ((X,≈X), |=, (Y,≈Y )) in fuzzy
setting, and α =↑, ω =↓, i.e.,

α : LX → LY , for A ∈ LX , α(A)(y) = A↑(y) =
∧

x∈X

A(x) → I(x, y).

ω : LY → LX , for B ∈ LY , ω(B)(x) = B↓(x) =
∧

y∈Y

B(y) → I(x, y).

Definition 3. Suppose H ∈ LX , if {x ∈ X | H(x) > 0} is finite, then H is
called finite.

Clearly if L=2, {x ∈ X | H(x) > 0} = {x ∈ X | H(x) = 1}, is the same with
the finite set in classical set theory.

In [9], we defined the notion of an approximable concept,

Definition 4. Given A ∈ LX , if for each finite H ∈ LX , we have (H �
A) ≤ (ω(α(H)) � A), i.e., S(H,A) ≤ S(ω(α(H)), A), then A is called to be an
extent of a formal fuzzy approximable concept. A is also called an (formal fuzzy)
approximable concept (of objects).

Dually, a set A ∈ LY is an intent of a formal fuzzy approximable con-
cept, if for each finite H ∈ LY , we have (H � A) ≤ (α(ω(H)) � A), i.e.,
S(H,A) ≤ S(α(ω(H)), A). A is also called an (formal fuzzy) approximable con-
cept (of attributes). We will use the symbol A (Y, I) to denote the set of all
approximable concepts A (of attributes).

Since for each finite H ∈ LX , we have H ⊆ ω(α(H)), that is to say, H(x) ≤
ω(α(H))(x) for every x ∈ X. So we obtain H(x) → A(x) ≥ ω(α(H))(x) → A(x).
Thus S(H,A) ≥ S(ω(α(H)), A) for every A ∈ LX .

In the similar way, for each finite H ∈ LY , and A ∈ LY , we also have
S(H,A) ≥ S(α(ω(H)), A).

By the above discussion, we obtain an equivalent definition,

Definition 4
′

. A ∈ LX is called an extent of a formal fuzzy approximable
concept, if for each finite H ∈ LX , we have (H � A) = (ω(α(H)) � A), i.e.,
S(H,A) = S(ω(α(H)), A).

Dually, an L-set A ∈ LY is called an intent of a formal fuzzy approximable
concept, if for each finite H ∈ LY , we have (H � A) = (α(ω(H)) � A), i.e.,
S(H,A) = S(α(ω(H)), A).

The second choice for the definition of an approximable concept is Definition
5.

Definition 5. Given A ∈ LX , if for each finite H ∈ LX , and H ⊆ A, we have
ω(α(H)) ⊆ A, then A is called to be an extent of a formal fuzzy approximable
concept. A is also called an (formal fuzzy) approximable concept (of objects).
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Dually, a set A ∈ LY is an intent of a formal fuzzy approximable concept, if
for each finite H ∈ LY , and H ⊆ A, we have α(ω(H)) ⊆ A. A is also called an
(formal fuzzy) approximable concept (of attributes).

From the one direction, we have
Lemma 2. Suppose A is an approximable concept in the sense of Definition

4, then A is also an approximable concept in the sense of Definition 5.
Proof. It is clearly.
From the other direction, suppose A is an approximable concept in the sense

of Definition 5, for F = {A(y0)/y0}, clearly we have F ⊆ A. Thus α(ω(F )) ⊆ A.
So we obtain α(ω(F ))(y) ≤ A(y) for every y ∈ Y .

ω(F )(x) =
∧

y∈Y

F (y) → I(x, y)

= A(y0) → I(x, y0).
and
α(ω(F ))(y) =

∧

x∈X

ω(F )(x) → I(x, y)

=
∧

x∈X

(A(y0) → I(x, y0)) → I(x, y).

By Definition 5, we have,∧

x∈X

(A(y0) → I(x, y0)) → I(x, y) ≤ A(y).

Lemma 3. Suppose A is an approximable concept in the sense of Definition
5, then A is also an approximable concept in the sense of Definition 4.

Proof. Suppose A is an approximable concept in the sense of Definition 5.
(1) For simplicity, we may assume H = {a/y0}, then
S(H,A) =

∧

y∈Y

H(y) → A(y) = a → A(y0).

ω(H)(x) =
∧

y∈Y

H(y) → I(x, y)

= a → I(x, y0).
and
α(ω(H))(y) =

∧

x∈X

ω(H)(x) → I(x, y)

=
∧

x∈X

[a → I(x, y0)] → I(x, y).

(2) We have to prove A is an approximable concept in the sense of Definition
4, it suffices to prove S(H,A) ≤ S(α(ω(H)), A). i.e.,

a → A(y0) ≤
∧

y∈Y

[
∧

x∈X

(a → I(x, y0)) → I(x, y)] → A(y) (*).

(3) To prove (*), it suffices to prove
a → A(y0) ≤ [

∧

x∈X

(a → I(x, y0)) → I(x, y)] → A(y) holds for every y ∈ Y ,

It is valid, since
a → A(y0)
≤ [A(y0) → I(x, y0)] → [a → I(x, y0)]
≤ [(a → I(x, y0)) → I(x, y)] → [(A(y0) → I(x, y0)) → I(x, y)],
thus, we obtain,
[(a → I(x, y0)) → I(x, y)] ⊗ [a → A(y0)] ≤ [(A(y0) → I(x, y0)) → I(x, y)],
so we have
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[(a → I(x, y0)) → I(x, y)]⊗[a → A(y0)] ≤
∧

x∈X

[(A(y0) → I(x, y0)) → I(x, y)],

that is to say,

[a → A(y0)]

≤ [(a → I(x, y0)) → I(x, y)] →
∧

x∈X

[(A(y0) → I(x, y0)) → I(x, y)]

≤
∧

x∈X

[(a → I(x, y0)) → I(x, y)] →
∧

x∈X

[(A((y0) → I(x, y0)) → I(x, y)]

≤
∧

x∈X

[(a → I(x, y0)) → I(x, y)] → A(y).

By this, (*) holds. Hence we obtain S(H,A) ≤ S(α(ω(H)), A). That is, A is
an approximable concept in the sense of Definition 4.

So we obtain,

Proposition 1. Definition 4 and Definition 5 are equivalent.

The following proposition gives a representation of an approximable concept.

Proposition 2. Suppose A is an approximable concept in A(Y.I), then

A(y) =
∨

finite H∈LY

S(H,A) ⊗ α(ω(H))(y).

Proof. Since A is an approximable concept, so for each finite H ∈ LY , we
have S(H,A) ≤ S(α(ω(H)), A). Thus we have,

S(H,A) ⊗ α(ω(H))(y) ≤ S(α(ω(H)), A) ⊗ α(ω(H))(y) ≤ A(y).

So we obtain,
∨

finite H∈LY

S(H,A) ⊗ α(ω(H))(y) ≤ A(y).

On the other hand, for {A(y)/y} ∈ LY , since H ⊆ α(ω(H)), we obtain

S({A(y)/y}, A) ⊗ α(ω({A(y)/y}))(y) = 1 ⊗ α(ω({A(y)/y}))(y)

= α(ω({A(y)/y}))(y) ≥ {A(y)/y}(y) = A(y).

Furthermore we have,
∨

finite H∈LY

S(H,A) ⊗ α(ω(H))(y) ≥ A(y).

Hence the equation holds.

Note. In [10], we introduced the notions of a directed set, a way-below rela-
tion, a continuous lattice, an algebraic lattice in fuzzy setting. In [9], we adopted
Definition 4, and showed that approximable concept lattices represent algebraic
completely lattice L-ordered sets in the sense of [3]. For more details, see [8, 9,
10, 11].

5 Generalized Approximable Concepts

As showed in Introduction, R. Bĕlohlávek and Stanislav Krajc̆i gave the
generalization of concept lattice, respectively, see [1, 6].

In [16, 17], Stanislav Krajc̆i obtained a common platform for both of them,
and proved all complete lattices are isomorphic to the generalized concept lat-
tices.

We introduce some main notions [16, 17].
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Suppose L is a poset, C and D are two supremum-complete upper-semilattices.
i.e., there exists supX =

∨
X for each subset of C or D (in fact, C,D are com-

plete lattices). Let • : C×D → L be monotone and left-continuous in both their
arguments, that is to say,

1a) c1 ≤ c2 implies that c1 • d ≤ c2 • d for all c1, c2 ∈ C and d ∈ D.

1b) d1 ≤ d2 implies that c • d1 ≤ c • d2 for all c ∈ C and d1, d2 ∈ D.

2a) If c•d ≤ ι holds for d ∈ D, ι ∈ L and for all c ∈ X ⊆ C, then supX•d ≤ l.

2b) If c•d ≤ ι holds for c ∈ C, ι ∈ L and for all d ∈ Y ⊆ D, then c•supY ≤ l.

Let A and B be non-empty sets and R be L-fuzzy relation on their Cartesian
product, R : A × B → L. Stanislav Krajc̆i defined two mappings as follows,

(1) ր: BD →A C, if g : B → D, then ր (g) : A → C, where ր (g)(a) =
sup{c ∈ C | ∀b ∈ B, c • g(b) ≤ R(a, b)}.

(2) ւ: AC →B D, if f : A → C, then ւ (f) : B → D, where ւ (f)(b) =
sup{d ∈ D | ∀a ∈ A, f(a) • d ≤ R(a, b)}.

In [16, 17], Stanislav Krajc̆i introduced a generalized concept lattice.

Based on the common platform, we give a generalization of an approximable
concept, i.e., a generalized approximable concept.

The notions of a directed set, an algebraic lattice were introduced in Section
2.1. In the section, because the definition is not symmetric, similarly, we also
give the notions of a up-directed set, a left-algebraic lattice.

Definition 6 Suppose h : B → D, if there exists {bi | i ∈ I} ⊆ B, where I
is a finite index, such that h(bi) 6= 0, and h(b) = 0 for all b ∈ B, b 6= bi, then h
is called finite.

Definition 7 Suppose g : B → D, g is a generalized approximable concept,
if for each finite h ≤ g, we have ւր (h) ≤ g.

The collection of all generalized approximable concepts denoted by A. In the
first part, we will show that (A,≤) is a left-algebraic lattice.

When L,C,D are finite, the notions of a generalized approximable concept
and a generalized concept are identical.

Lemma 4 Suppose g ∈ A, {ւր (h) | finite h ≤ g} is up-directed.

Proof For g ∈ A, suppose h1, h2 are finite, and h1, h2 ≤ g, we have ւր
(h1) ≤ւր (h1 ∨ h2), ւր (h2) ≤ւր (h1 ∨ h2). where (h1 ∨ h2)(a) = h1(a) ∨
h2(a). Thus h1 ∨ h2 is also finite, and h1 ∨ h2 ≤ g.

Lemma 5 Suppose g ∈ A, we have g = sup{ւր (h) | finite h ≤ g}.

Proof It is trivial.

By Lemmas 4, 5, we have g is the supremum of a up-directed set.

Lemma 6 Suppose h is finite, then ւր (h) is compact.

Proof It is trivial.

Lemma 7 Suppose {gi | i ∈ I} is a up-directed set of generalized approx-
imable concepts, then

∨

i∈I

gi is also a generalized approximable concept.

Proof For each finite h ≤
∨

i∈I

gi, there exist g1, g2, · · · , gm, such that h(bi) ≤

gi(bi); and for every b ∈ B, b 6= bi, h(b) = 0.
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Since {gi | i ∈ I} is up-directed, there exists gi0 , such that h ≤ gi0 . Further-
more, gi0 is a generalized approximable concept, we have ւր (h) ≤ gi0 ≤

∨

i∈I

gi,

which implies that
∨

i∈I

gi is a generalized approximable concept.

Lemma 8 Suppose {gi | i ∈ I} is a set of generalized approximable concepts,
then

∧

i∈I

gi is also a generalized approximable concept.

Proof It is trivial.

Proposition 3. (A,≤) is left-algebraic.

Proof By Lemmas 4, 5, 6, 7, 8.

Proposition 3 shows that all generalized approximable concepts form a left-
algebraic lattice. Conversely, in the second part, suppose (P,≤) is a left-algebraic
lattice, we will construct a generalized approximable concept lattice which is
isomorphic to (P,≤).

The elements of P denoted by x, y, and the elements of K(≪) denoted by
p, q, where K(≪) is the set of all compact elements.

Let A = P , B = K(≪), and R(x, p) : A × B → L indicates the degree of p
belonging to x. By Proposition 3, we obtain a generalized approximable concept
lattice (A,≤).

In what follows, We will prove that (P,≤) is isomorphic to (A,≤).

Suppose e ∈ D, p ∈ K(≪), we define a mapping {e/p} : K(≪) → D, where
({e/p})(p) = e; ({e/p})(q) = 0, if q 6= p.

Similarly, for m ∈ C, x ∈ P , we also define a mapping {m/x} : P → C,
where {m/x}(x) = m; and {m/x}(y) = 0, if y 6= x.

Lemma 9 (1) ր ({e/p})(x) = sup{c ∈ C | c • e ≤ R(x, p)},
(2) ւ ({m/x})(p) = sup{d ∈ D | m • d ≤ R(x, p)}.
Proof (1) ր ({e/p})(x)

= sup{c ∈ C | ∀q ∈ K(≪), c • ({e/p})(q) ≤ R(x, q)}
= sup{c ∈ C | c • e ≤ R(x, p)}.
(2) It is analogous.

Proposition 4. Suppose g : K(≪) → D is a generalized approximable
concept, p ∈ K(≪), g(p) 6= 0, then we have g(p) = 1.

Proof For g : K(≪) → D, and p ∈ K(≪), g(p) 6= 0. Let e = g(p) ∈ D, we
obtain a mapping {e/p} : K(≪) → D as defined above.

By Lemma 9, let x = p ∈ K(≪) ⊆ P , we have

ր ({e/p})(p)

= sup{c ∈ C | c • e ≤ R(p, p)} = 1.

ւր ({e/p})(p)

= sup{d |ր ({e/p})(p) • d ≤ R(p, p)} = 1.

Since {d/p} ≤ g, and g is a generalized approximable concept, we have
ւր ({e/p}) ≤ g. Thus ւր ({e/p})(p) ≤ g(p). So we obtain g(p) = 1.

By this, for a generalized approximable concept g, we define

xg = ∨{p | g(p) = 1}.
On the other hand, for every x ∈ P , since P is left-algebraic,

x = ∨{↓ x ∩ K(≪)},
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we may define gx : K(≪) → D, such that gx(p) = 1 for every p ≪ x. Then gx

is a generalized approximable concept. Thus we obtain an isomorphism between
P and generalized approximable concept lattice A. Thus P and A is isomorphic.
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