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Abstract. In the theory of generalised colourings of graphs, the Unique
Factorization Theorem (UFT) for additive induced-hereditary properties
of graphs provides an analogy of the well-known Fundamental Theorem
of Arithmetics. The purpose of this paper is to present a new, less com-
plicated, proof of this theorem that is based on Formal Concept Analysis.
The method of the proof can be successfully applied even for more gen-
eral mathematical structures known as relational structures.

1 Introduction and motivation

Formal Concept Analysis (briefly FCA) is a theory of data analysis which iden-
tifies conceptual structures among data sets. It was introduced by R. Wille in
1982 and since then has grown rapidly (for a comprehensive overview see [12]).
The mathematical lattices that are used in FCA can be interpreted as classifica-
tion systems. Formalized classification systems can be analysed according to the
consistency of their relations. Some extensions and modifications of FCA can be
found e.g. in [16].

In this paper we provide a new proof of the Unique Factorization Theorem
(UFT) for induced-hereditary additive properties of graphs. The problem of
unique factorization of reducible hereditary properties of graphs into irreducible
factors was formulated as Problem 17.9 in the book [15] of T.R. Jensen and
B. Toft. Our proof is significantly shorter as the previous ones and it is based on
FCA. Moreover, FCA allows us to work with concepts instead of graphs and the
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reader can rather easily see that using this approach we can prove UFT even for
properties of more general structures like hypergraphs, coloured hypergraphs,
posets, etc. Such general mathematical object are very often called relational
structures.

In general, we follow standard graph terminology (see e.g. [1]). In particular,
we denote by N the set of positive integers and by Iω, I and Iconn the class
of all simple countable graphs, simple finite graphs and simple finite connected
graphs, respectively and Kn stands for the complete graph of order n. For a
positive integer k and a graph G, the notation k.G is used for the union of k

vertex disjoint copies of G. The join of graphs G, H is the graph obtained from
the disjoint union G and H by joining all vertices of G with all the vertices of
H.

All our considerations can be done for arbitrary infinite graphs, however, in
order to avoid formal set-theoretical problems, we shall consider only countable
infinite graphs. Moreover, we assume that the vertex set V (G) of a graph G is a
subset of a given countable set, say U . A graph property P is any isomorphism-
closed nonempty subclass of Iω. It means that investigating graph properties,
in principle, we restrict our considerations to unlabeled graphs.

Let P1,P2, . . . ,Pn be graph properties. A vertex (P1,P2, . . . ,Pn)-colouring
(partition) of a graph G = (V,E) is a partition (V1, V2, . . . , Vn) of V (G) (every
pair of Vi’s has empty intersection and the union of Vi’s forms V ) such that each
colour class Vi induces a subgraph G[Vi] having property Pi. For convenience, we
allow empty partition classes in the partition sequence. An empty class induces
the null graph K0 = (∅, ∅). If each of the Pi’s, i = 1, 2, . . . , n, is the property O
of being edgeless, we have the well-known proper vertex n-colouring. A graph
G which have a (P1,P2, . . . ,Pn)-colouring is called (P1,P2, . . . ,Pn)-colourable,
and in such a situation we say that G has property P1◦P2◦ · · · ◦Pn. For more
details concerning generalized graph colourings we refer the reader to [2, 3, 15].

In 1951, de Bruijn and Erdős proved that an infinite graph G is k-colourable if
and only if every finite subgraph of G is k-colourable. An analogous compactness
theorem for generalized colourings was proved in [7]. The key concept for the
Vertex Colouring Compactness Theorem of [7] is that of a property being of
finite character. Let P be a graph property, P is of finite character if a graph in
Iω has property P if and only if each its finite induced subgraph has property
P. It is easy to see that if P is of finite character and a graph has property
P then so does every induced subgraph. A property P is said to be induced-
hereditary if G ∈ P and H ≤ G implies H ∈ P, that is P is closed under taking
induced subgraphs. Thus properties of finite character are induced-hereditary.
However not all induced-hereditary properties are of finite character; for example
the graph property Q of not containing a vertex of infinite degree is induced-
hereditary but not of finite character. Let us also remark that every property
which is hereditary with respect to every subgraph (we say simply hereditary)
is induced-hereditary as well. The properties of being edgeless, of maximum
degree at most k, Kn-free, acyclic, complete, perfect, etc. are properties of finite
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character. The compactness theorem for (P1,P2, . . . ,Pn)-colourings, where the
Pi’s are of finite character, have been proved using Rado’s Selection Lemma.

Theorem 1 (Vertex Colouring Compactness Theorem, [7]). Let G be a
graph in Iω and let P1,P2, . . . ,Pn be properties of graphs of finite character.
Then G is (P1,P2, . . . ,Pn)-colourable if every finite induced subgraph of G is
(P1,P2, . . . ,Pn)-colourable.

Let us denote by R = P1◦P2◦ · · · ◦Pn, n ≥ 2 the set of all (P1,P2, . . . ,Pn)-
colourable graphs. The binary operation ◦ is obviously commutative, associative
on the class of graph properties and Θ = {K0} is its neutral element. The
properties Θ, I and Iω are said to be trivial. A nontrivial graph property P is
said to be reducible if there exist nontrivial graph properties P1,P2, such that
P = P1◦P2; otherwise P is called irreducible. In what follows each property is
considered to be nontrivial.

The problem of unique factorization of a reducible induced-hereditary prop-
erty into induced-hereditary factors was introduced in connection with the study
of the existence of uniquely colourable graphs with respect to hereditary prop-
erties (see [2, 3] and Problem 17.9. in the book [15]). In general, there are only
few graph properties that have a unique factorization into irreducible ones (see
[8, 10]). However, for some important classes of graph properties the Unique
Factorization Theorems can be proved. In [19] it is proved that every reducible
property of finite graphs, which is closed under taking subgraphs and disjoint
union of graphs (such properties are called additive) is uniquely factorisable into
irreducible additive hereditary factors. An analogous result was obtained in [10,
17] for additive induced-hereditary properties of finite graphs. Following [2] let
us denote by M

a the set of all additive induced-hereditary properties of finite
graphs. Then UFT can be stated as follows.

Theorem 2 (Unique Factorization Theorem - UFT, [10, 17]). Every ad-
ditive induced-hereditary property of finite graphs is in M

a uniquely factorisable
into a finite number of irreducible additive induced-hereditary properties, up to
the order of factors.

Let us remark, that using Theorem 1 we can prove UFT for the class M
ωa

of the additive properties of infinite (countable) graphs of finite character (see
[13]). The proof of the Unique Factorization Theorem is rather complicated. The
problems concerning the proof were discussed from different points of view in
several papers [6, 10, 11, 13, 17] and in details in PhD thesis (see e.g. [8]). On the
other hand, the Theorem 2 has several deep applications related to the existence
of uniquely partitionable graphs (see [4, 5]) and consequently the complexity of
generalized colourings. A. Farrugia in [9] proved that if P and Q are additive
induced-hereditary graph properties, then (P,Q)-colouring is NP-hard, with the
sole exception of graph 2-colouring (the case where both P and Q are the set O of
finite edgeless graphs). Moreover, (P,Q)-colouring is NP-complete if and only if
P- and Q-recognition are both in NP. It shows that additive induced-hereditary
properties are rather complicated mathematical structures.
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The aim of this paper is to present a new method of the proof of the Unique
Factorization Theorem, which will eliminate some technical difficulties in the
previous proofs. Moreover it shows a new utilisation of the methods of FCA.

2 Hereditary graph properties in the language of FCA

It is quite easy to prove that the sets M
a (M ωa) of all additive and induced-

hereditary graph properties of finite graphs (of finite character), partially ordered
by set inclusion, forms a complete distributive lattice. The lattices of hereditary
graph properties have been studied intensively, references may be found in [2,
14, 18]. In this section we will present a new approach to the lattice of additive
induced-hereditary graph properties.

In order to proceed we need to introduce some concepts of FCA according
to a fundamental book of B. Ganter and R. Wille [12].

Definition 1. A formal context K := (O,M, I) consists of two sets O and M

and a relation I between O and M . The elements of O are called the objects
and the elements of M are called the attributes of the context.

For a set A ⊆ O of objects we define

A′ := {m ∈ M : gIm for all g ∈ A}.

Analogously, for a set B of attributes we define

B′ := {g ∈ O : gIm for all ∈ B}.

A formal concept of the context (O, M, I) is a pair (A,B) with A ⊆ O,B ⊆
M,A′ = B and B′ = A.

We call A the extent and B the intent of a concept (A,B). L(O,M, I)
denotes the set of all concepts of the context (O,M, I).

If (A1, B1) and (A2, B2) are concepts of a context and A1 ⊆ A2 (which is
equivalent to B2 ⊆ B1), we write (A1, B1) ≤ (A2, B2).

For an object g ∈ O we write g′ = {m ∈ M |gIm} and γg for the object
concept (g′′, g′), where g′′ = {{g}′}′.

Let us mention that, by the Basic Theorem on Concept Lattices, the set
L(O,M, I) of all concepts of the context (O,M, I) partially ordered by the rela-
tion ≤ (see Definition 1) is a complete lattice.

Let us present additive induced-hereditary graph properties as concepts in
a given formal context. Using FCA we can proceed in the following way. Let
us define a context (O, M, I) by setting objects to countable simple graphs, e.g.
O = Iω. For each connected finite simple graph F ∈ I let us consider an attribute
mF : “do not contain an induced-subgraph isomorphic to F”. Thus GImF means
that the graph G does not contain any induced subgraph isomorphic to F . We
can immediately observe the following:
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Lemma 1. Let O = Iω and M = {mF , F ∈ Iconn}. Then the concepts of
the context K = (O,M, I) are additive induced-hereditary graph properties of
finite character and the concept lattice (L(O, M, I),≤) is isomorphic to the lattice
(M ωa,⊆). Moreover, for each concept P = (A,B) there is an object - a countable
graph G ∈ O such that P = γG = (G′′, G′).

Proof. It is easy to verify that the extent of any concept (A,B) of K forms
an additive induced-hereditary property P = A of finite character. Obviously,
each countable graph G = (V,E) in the context K leads to an “object concept”
γG = (G′′, G′). On the other hand, because of additivity, the disjoint union of
all finite graphs having a given additive induced-hereditary property P ∈ M

ωa

is a countable infinite graph K satisfying γK = (P, Iconn − P). ⊓⊔

In order to characterise additive induced-hereditary properties of finite graphs,
mainly two different approaches were used: a characterization by generating sets
and/or by minimal forbidden subgraphs (see [2] and [11]). While the extent A

of a concept (A,B) ∈ L(O,M, I) is related to a graph property P, the intent
B consists of forbidden connected subgraphs of P. The set F (P) of minimal
forbidden subgraphs for P consists of minimal elements of the poset (B,≤). For
a given countable graph G ∈ Iω let us denote by age(G) the class of all finite
graphs isomorphic to finite induced-subgraph of G (see e.g. [20]). Scheinerman
in [21] showed, that for each additive induced-hereditary property P of finite
graphs, there is an infinite countable graph G such that P = age(G). This result
corresponds to the proof of Lemma 1. On the other hand, it is worth to mention
that γG = (P, G′) does not imply, in general, that P = age(G). Let us define
a binary relation ∼= on Iω by G1

∼= G2 whenever γG1 = γG2 in the context K,
and we say that G1 is congruent with G2 with respect to K. Obviously, ∼= is an
equivalence relation on Iω. The aim of the next section is to find appropriate
representatives of congruence classes and to describe their properties.

3 Uniquely decomposable graphs

All the previous proofs of UFT are based on a construction of uniquely R-
decomposable graphs that are defined as follows.

Definition 2. For given (finite or infinite) graphs G1, G2, . . . , Gn, n ≥ 2, de-
note by G1 ∗ G2 ∗ l · · · ∗ Gn the set of graphs

{

H ∈ Iω :

n
⋃

i=1

Gi ⊆ H ⊆
n

∑

i=1

Gi

}

,

where
⋃n

i=1
Gi denotes the disjoint union and

∑n

i=1
Gi the join of the graphs

G1, G2, . . . , Gn, respectively. For a graph G, s ≥ 2, s ∗ G stands for the class
G ∗ G ∗ · · · ∗ G, with s copies of G.

Let G be a graph and R be an additive induced-hereditary property of graphs.
Then we put decR(G) = max{n : there exist a partition {V1, V2, . . . , Vn}, Vi 6=
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∅, of V (G) such that for each k ≥ 1, k.G[V1] ∗ k.G[V2] ∗ · · · ∗ k.G[Vn] ⊆ R}. If
G 6∈ R we set decR(G) to zero.

A graph G is said to be R-decomposable if decR(G) ≥ 2; otherwise G is
R-indecomposable.

A graph G ∈ P is called P-strict if G ∗ K1 6⊆ P. The class of all P-strict
graphs is denoted by S(P). Put dec(R) = min{decR(G) : G ∈ S(R)}.

A R-strict graph G with decR(G) = dec(R) = n ≥ 2 is said to be uniquely
R-decomposable if there exists exactly one R-partition {V1, V2, . . . , Vn}, Vi 6=
∅, such that for each k ≥ 1, k.G[V1] ∗ k.G[V2] ∗ · · · ∗ k.G[Vn] ⊆ R. We call the
graphs G[V1], G[V2], . . . , G[Vn] ind-parts of the uniquely decomposable graph G.

These notions are motivated by the following observation: Let us suppose that
G ∈ R = P◦Q and let (V1, V2) be a (P,Q)-partition of G. Then by additivity of
P and Q we have that k.G[V1] ∗ k.G[V2] ⊆ R for every positive integer k. Thus,
if the property R is reducible, every graph G ∈ R with at least two vertices is
R-decomposable.

We proved in [13, 17] that for any reducible additive induced-hereditary prop-
erty also the converse assertion holds:

Theorem 3. An induced-hereditary additive property R is reducible if and only
if all graphs in R with at least two vertices are R-decomposable.

Remark that almost all graphs in R are R-strict and each graph G ∈ R is an
induced subgraph of a R-strict graph. To present our main result we need some
notions from [10]:

Definition 3. Let d0 = {U1, U2, . . . , Um} be a P-partition of a graph G ∈ P.
A P-partition d1 = {V1, V2, . . . , Vn} of G respects d0 if no Vi intersects two
or more Uj’s; that is each Vi is contained in some Uj. We say that the graph
G∗ ∈ s ∗ G respects d0 if G∗ ∈ s.G[U1] ∗ s.G[U2] ∗ · · · ∗ s.G[Um]. For a graph
G∗ ∈ s ∗ G, denote the copies of G by G1, G2, . . . , Gs. Then we say that a P-
partition d = {V1, V2, . . . , Vn} of G∗ respects d0 uniformly whenever for each
Vi there is a Uj such that for every Gk, Vi ∩ V (Gk) ⊆ Uj.

If G is uniquely R-decomposable, its ind-parts respect d0 if its unique R-
partition respects d0. If G∗ is uniquely R-decomposable, it ind-parts respect
d0 uniformly if for some s the graph G∗ ∈ s ∗ G respects d0 and the unique
R-partition of G∗ respects d0 uniformly.

Based on the construction given in [17] A. Farrugia and R.B. Richter proved:

Theorem 4. ( [10, 17]) Let G be an R-strict graph with decR(G) = dec(R) =
n ≥ 2 and let d0 = {U1, U2, . . . , Um} be a fixed R-partition of G. Then there is
a uniquely R-decomposable finite graph G∗ ∈ s ∗G, for some s, that respects d0,
and moreover any R-partition of G∗ with n parts respects d0 uniformly.

Using Theorem 4 we can prove:
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Theorem 5. Let R ∈ M
ωa be a reducible graph property of finite character.

Then there exists a uniquely R-decomposable infinite countable graph H such
that γH = (R,H ′) and age(H) = R∩ I.

Proof. Following E. Scheinerman [21], a composition sequence of a class P of fi-
nite graphs is a sequence of finite graphs H1,H2, . . . ,Hn, . . . such that Hi ∈
P,Hi < Hi+1 for all i ∈ N and for all G ∈ P there exists a j such that
G ≤ Gj . According to Theorem 4, we can easily find a composition sequence
H1,H2, . . . ,Hn, . . . of R∩I consisting of finite uniquely R-decomposable graphs.
Without loss of generality, we may assume that if i < j, i, j ∈ N, then V (Hi) ⊂
V (Hj). Let V (H) =

⋃

i∈N
V (Hi) and {u, v} ∈ E(H) if and only if {u, v} ∈

E(Hj) for some j ∈ N. It is easy to see that age(H) = R ∩ I, implying
γH = (R,H ′). Let us remark that, according to the Theorem 1, H is R-
decomposable if every finite induced subgraph of H is R-decomposable. In
order to verify, that H is uniquely R-decomposable it is sufficient to verify
that if {Vj1 , Vj2 , . . . , Vjn

}, Vji
6= ∅ is the unique R-partition of Hj , j ∈ N,

then {U1, U2, . . . , Un}, where Uk =
⋃

j∈N
Vjk

, k = 1, 2, . . . , n, is the unique R-
partition of H. Indeed, this is because the existence of other R-partition of H

would imply the existence of other partition of some Hi and it provides a con-
tradiction. ⊓⊔

4 Unique Factorization Theorem for properties of finite

character

In [13], based on Theorem 1 and Theorem 2 we proved:

Theorem 6. Every reducible additive property R of finite character is uniquely
factorisable into finite number of irreducible factors belonging to M

ωa.

Here we present a new proof of the Theorem 6 based on the Theorem 5 in
the context K.

Proof. According to the Theorem 5, let H be a uniquely R-decomposable infinite
countable graph such that γH = (R,H ′) and let dH = {W1,W2, . . . ,Wn} be
the unique R-partition of H. Let Pi = γH[Wi] for i = 1, 2, . . . , n = dec(R).
Then obviously we have R = P1◦P2◦ · · · ◦Pn. If there would be some other
factorization of R into n irreducible factors then obviously H would have another
R-partition, which contradicts to the fact that H is uniquely R-decomposable.
Since dec(H) = dec(R) = n, there is no factorization of R into more then n

factors. Thus to prove that R = P1◦P2◦ · · · ◦Pn is the unique factorization of
R. Further, let R = Q1◦Q2◦ . . . ◦Qm,m < n and d0 = {U1, U2, . . . Um} be a
(Q1,Q2, . . . ,Qm)-partition of H. Then, by Theorem 4, there is an s ∈ N such
that s∗H respects d0 uniformly. Thus, since m < n, there exists an index j such
that H[Uj ] ∈ H[Wr] ∗ H[Ws], implying Qj is reducible. ⊓⊔
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5 Conclusion

By a careful examination of the previous considerations and arguments, it is not
very difficult to see, that for the presented method of the proof it is not impor-
tant that we are dealing with simple graphs. Indeed, without any substantial
change the presented proofs can be applied for directed graphs, hypergraphs or
partially ordered sets. All these mathematical objects are examples of so-called
relational structures. Thus we obtain a general UFT that is applicable for addi-
tive properties of finite character for different objects, with various applications
in computer science. For other details we refer the reader to [6].
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