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Abstract. The notion of an affine ordered set is specialized to that of
a complete affine ordered set, which can be linked to attribute-complete
many-valued contexts and is categorically equivalent to the notion of a
closed system of equivalence relations (SER). This specialization step
enables us to give conditions under which the complete affine ordered
set can be interpreted as the set of congruence classes labeled with the
congruence relation they stem from yielding a coordinatization theorem
for affine ordered sets.

1 Introduction

In [KS04] the notion of affine ordered sets is introduced to provide an order-
theoretic, geometric counterpart of (simple) many-valued contexts. Here we spe-
cialize the notion of an affine ordered set to that of a complete affine ordered
set, which is categorically equivalent to attribute-complete many-valued contexts
and to closed systems of equivalence relations (SER). This specialization step
enables us to add an algebraic aspect, that is, to give conditions under which the
complete affine ordered set can be interpreted as the set of congruence classes of
an algebra labeled with the congruence relation they stem from. This approach
can be seen in the tradition of coordinatization theorems in geometry where a
prominent example is the coordinatization of affine planes via the Theorem of
Desargues.

In Section 2 we introduce the notions of attribute-complete many-valued
contexts and closed SERs and insinuate the correspondence between the two. The
order-theoretic geometric counterpart is introduced as complete affine ordered set
in Section 3, and Section 4 shows the categorical equivalence between complete
affine ordered sets and closed SERs. The second part of the paper, consisting of
Section 5, deals with the question how to coordinatize closed SERs and complete
affine ordered sets.

2 Attribute-complete Many-valued Contexts and Closed

Systems of Equivalence Relations

Data tables can be formalized as many-valued contexts as it is common in Formal
Concept Analysis [GW99]. Many-valued contexts are also known as Chu Spaces
[Pr95] or Knowledge Representation Systems [Pa91].
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Definition 1 (many-valued context). A (complete) many-valued context is
a structure K := (G, M, W, I), where G is a set of objects, M is a set of attributes,
W is a set of values and I ⊆ G × M × W is a ternary relation, where for every
(g,m) ∈ G×M there exists a unique w ∈ W with (g,m, w) ∈ I; in the following
m will be considered as a function from G to W via m(g) := w.

We call an attribute m ∈ M an id attribute if for any two objects g1, g2 ∈ G
the values of g1 and g2 regarding to m are different (i.e. m(g1) 6= m(g2)). The
following definition provides a notion of dependency between attributes of a
many-valued context.

Definition 2 (functional dependence). If M1 and M2 are sets of attributes
of a many-valued context (G, M, W, I), we call M2 functionally dependent on
M1 (in symbols: M1 → M2) if for all pairs of objects g, h ∈ G

∀m1 ∈ M1 : m1(g) = m1(h) ⇒ ∀m2 ∈ M2 : m2(g) = m2(h).

If M1 → M2 and M2 → M1, the sets of attributes, M1 and M2, are called
functionally equivalent, denoted by M1 ↔ M2.

For a map f : A → B the kernel of f is defined as the equivalence relation
ker(f) := {(a, b) ∈ A2 | f(a) = f(b)}. It is easily seen that M1 → M2 holds
if and only if

⋂
m1∈M1

ker(m1) ⊆
⋂

m2∈M2
ker(m2). Accordingly, m1 and m2

are functionally equivalent if and only if
⋂

m1∈M1
ker(m1) =

⋂
m2∈M2

ker(m2).
Many-valued contexts where any two functionally equivalent attributes are equal
will be called simple.

Definition 3 (attribute-complete many-valued context). A many-valued
context K := (G, M, W, I) is called attribute-complete if it is simple, has an id
attribute, and

∀N ⊆ M∃m ∈ M : N ↔ {m}.

Following the main scheme from [KS04], we assign a system of equivalence
relations to attribute-complete many-valued contexts in order to describe them
geometrically and order-theoretically in a later step. We recall the basic defini-
tions for systems of equivalence relations from [KS04]. We denote the identity
relation on the set X by ∆X := {(x, x) |x ∈ X}.

Definition 4 (system of equivalence relations). We call E := (D,E) a
system of equivalence relations (SER), if D is a set and E is a set of equivalence
relations on D. If d ∈ D and θ ∈ E, we denote the equivalence class of d by
[d]θ := {d′ ∈ D | d′θd}. If ∆D ∈ E we will also call (D,E) an “ SER with identity
relation”.

Every attribute m ∈ M induces a partition on the object set via the equiva-
lence classes of ker(m). So we can regard a simple many-valued context as a set
of partitions induced by its attributes. Every block of a partition corresponds to
the set of objects with a certain value with respect to a certain attribute. The
following definition captures attribute-complete many-valued contexts.
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Definition 5 (closed SER). We call a pair (G, E) a closed SER if G is a
set and E is a closure system of equivalence relations on G and E contains the
identity on G.

To every given closed SER E := (D,E) we can assign a simple many-valued
context K(E) := (D,E,W, I), where W := {[d]θ | d ∈ D, θ ∈ E} and I :=
{(d, θ, w) ∈ D × E × W |w = [d]θ}. Obviously, K(E) is attribute-complete.
On the other hand we can assign, as described above, a closed SER to every
attribute-complete many-valued context. We define E(K) := (G, {ker(m) |m ∈
M}). We observe that, for every attribute-complete many-valued context K, we
have K(E(K)) ≃ K and for every closed SER E we have E(K(E)) = E.

If we have such a closed system of equivalence relations we can assign the
lattice of its labeled equivalence classes to it. This structure, called complete
affine ordered set, is axiomatized in the next chapter.

3 Complete Affine Ordered Sets

In [KS04] the labeled equivalence classes of a system of equivalence relations
containing the diagonal are characterized order-theoretically using the notion of
an affine ordered set. We recall this basic definition which we will specialize in
the following yielding a corresponding notion to a closed SER.

Definition 6 (affine ordered set). We call a triple A := (Q,≤, ‖) an affine
ordered set, if (Q,≤) is a partially ordered set, ‖ is a equivalence relation on Q,
and the axioms (A1) - (A4) hold. Let A(Q) := Min(Q,≤) denote the set of all
minimal elements in (Q,≤) and A(x) := {a ∈ A(Q) | a ≤ x}.

(A1) ∀x ∈ Q : A(x) 6= ∅
(A2) ∀x ∈ Q∀a ∈ A∃!t ∈ Q : a ≤ t ‖ x
(A3) ∀x, y, x′, y′ ∈ Q : x′ ‖ x ≤ y ‖ y′ & A(x′) ∩ A(y′) 6= ∅ ⇒ x′ ≤ y′

(A4) ∀x, y ∈ Q∃x′, y′ ∈ Q : x � y & A(x) ⊆ A(y)
⇒ x′ ‖ x & y′ ‖ y & A(x′) ∩ A(y′) 6= ∅ & A(x′) * A(y′).

The elements of A(Q) are called points and, in general, elements of Q are called
subspaces. We say that a subspace x is contained in a subspace y if x ≤ y.

For every x ∈ Q we observe that θ(x) := {(a, b) ∈ A2 |π(a|x) = π(b|x)} is an
equivalence relation on the set of points.

Homomorphisms between ordered sets with parallelism are defined as follows:

Definition 7 (homomorphism for ordered sets with parallelism). For
ordered sets with parallelism A = (Q,≤, ‖) and A0 = (Q0,≤0, ‖0) we call a
mapping α : Q → Q0 a homomorphism if

• α maps points to points,
• α is order preserving (i.e. x ≤ y =⇒ α(x) ≤0 α(y)),
• α is preserves the parallelism (i.e. x ‖ y =⇒ α(x) ‖0 α(y)).
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By Hom(A, A0) we denote the set of all homomorphisms from A to A0.

From [KS04] we know that we can assign to any affine ordered set A a SER
with diagonal via E(A) := (Min(Q,≤), {θ(x)|x ∈ Q}) and to any SER with
diagonal E an affine ordered set via A(E) := ({([x]θ, θ) | θ ∈ E},≤′, ‖′) where ≤′

is defined as ([x]θ1, θ1) ≤′ ([y]θ2, θ2) : ⇐⇒ [x]θ1 ⊆ [y]θ2 & θ1 ⊆ θ2 and ‖′ is
defined as ([x]θ1, θ1) ‖

′ ([y]θ2, θ2) : ⇐⇒ θ1 = θ2.
For any ordered set P we denote by P⊥ the order which results by adding

a bottom element, also called the lifting of P . Given an affine ordered set A :=
(Q,≤, ‖), we will add as an axiom that (Q,≤)⊥ is a complete lattice to assure
that the SER E(A) is closed, i.e. the set {θ(x) |x ∈ Q} forms a closure system.

Definition 8 (complete affine ordered set). We call an affine ordered set
C := (Q,≤, ‖) complete affine ordered set if (Q,≤)⊥ forms a complete lattice.

As an illustration we give an example for a closed SER and its associated
affine ordered set.

Example 1. We construct an affine ordered set from the following relations on a
set U := {a, b, c, d, e}:

• △U

• θ1 defined by the classes {a} and {b, c, d, e}
• θ2 defined by the classes {a, b}, {c}, and {d, e}
• θ3 defined by the classes {b, c} plus singletons
• θ4 defined by the classes {d, e, } plus singletons
• ∇U

The lifting of the constructed affine ordered set is a lattice .

��������

∇U

��������
θ2

��������
��������

θ1

????????

��������

θ4

��������

????????
��������

θ3

????????

��������

△U

????????

��������

Fig. 1. Set of Equivalence Relations ordered via Set Inclusion

Note that for affine ordered sets we have x ≤ y ⇐⇒ A(x) ⊆ A(y) & θ(x) ⊆
θ(y).

Proposition 1. Let A := (Q,≤, ‖) be an affine ordered set where (Q,≤)⊥ is a
lattice and let xi ∈ Q for i ∈ I. Then we have A(

∧
I xi) =

⋂
I A(xi).
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Fig. 2. Lifted Affine Ordered Set

Proof. Let z :=
∧

I xi. We know that A(z) ⊆
⋂

I A(xi). Assume that there
exists a z∗ ∈

⋂
I A(xi) with z∗ /∈ A(z). Assume that A(π(z∗|z)) ⊆

⋂
I A(xi).

This contradicts the assumption that (Q,≤) is a lattice, since π(z∗|z) would be
a not comparable to z but also a lower bound of the xi. So we have to assume
A(π(z∗|z)) * A(x) ∩ A(y) which contradicts θ(z) ⊆

⋂
I θ(xi). ⊓⊔

Complete affine ordered sets exhibit a natural connection between parallelism
and the meet of the lattice.

Proposition 2. For a complete affine ordered set C := (Q,≤, ‖) we have

(P1) xi ‖ yi for all i ∈ I &
⋂

i∈I A(xi) 6= ∅ &
⋂

i∈I A(yi) 6= ∅
=⇒

∧
i∈I xi ‖

∧
i∈I yi.

Proof. The premise yields elements a, b ∈ A(Q) with a ∈
⋂

i∈I A(xi) and b ∈⋂
i∈I A(yi). By (A3) we get π(b|

∧
i∈I xi) ≤

∧
i∈I yi since π(b|

∧
i∈I xi) ‖

∧
i∈I xi ≤

xi0 ‖ yi0 and b ≤ π(b|
∧

i∈I xi) and b ≤ yi0 . Exchanging the roles of the xi and
the yi we dually get π(a|

∧
i∈I yi) ≤

∧
i∈I xi. But now assume π(b|

∧
i∈I xi) <∧

i∈I yi. This would imply that
∧

i∈I yi ∦
∧

i∈I xi and therefore we would get
π(a|

∧
i∈I yi) <

∧
i∈I xi. But this yields a contradictory configuration as de-

picted in Figure 3. Therefore we have π(b|
∧

i∈I xi) =
∧

i∈I yi which completes
our proof.

⊓⊔

4 The Correspondence between Closed SERs and

Complete Affine Ordered Sets

In [KS04] it is shown that to any affine ordered set A = (Q,≤, ‖) the functor E
assigns a SER with identity relation via E(A) := (Min(Q,≤), {θ(x)|x ∈ Q}) to
A. Conversely, for a SER with identity relation E = (D,E) an affine ordered set
A(E) can be constructed as follows:
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Fig. 3. Contradictory configuration for I = {1, ..., n}

– take the labeled equivalence classes Q := {([x]θ, θ)|x ∈ D , θ ∈ E} as set of
subspaces of the affine ordered set

– define the order ≤′ on Q as ([x]θ1, θ1) ≤′ ([y]θ2, θ2) : ⇐⇒ [x]θ1 ⊆ [y]θ2 &
θ1 ⊆ θ2

– define a relation ‖′ on the set of equivalence classes as ([x]θ1, θ1) ‖
′ ([y]θ2, θ2) :

⇐⇒ θ1 = θ2

Theorem 2 in [KS04] includes the assertion that the functors E and A (ex-
tended to the respective homomorphisms) establish a categorical equivalence
between SERs with diagonal and affine ordered sets. In the following we will
show that these functors also yield a categorical equivalence between the cate-
gory of closed SERs and the category of complete affine ordered sets.

Theorem 1. The category of closed SERs and the category of complete affine
ordered sets are equivalent.

Proof. Since we know already that the category of affine ordered sets and the
category of SER with identity are equivalent it remains to show that the functors
E and A move complete affine ordered sets to closed SERs and vice versa.
In the following let C := (Q,≤, ‖) be an complete affine ordered set. Firstly,
we show that E(C) = (E,D) is closed. Since we know that it contains the
identity we have to show that D is a closure system. Let R ⊆ Q. Then we
define MR := {θ(x) |x ∈ R}. We want to show that

⋂
MR ∈ E(C). For this we

construct an equivalence relation θ(z) and prove that θ(z) =
⋂

MR. Let a ∈ A
be an arbitrary but fixed point of C. We define z :=

∧
x∈R π(a|x). First, we show

that θ(z) ⊆
⋂

MR. For any x ∈ R we have that z ≤ π(a|x). This implies that
θ(z) ⊆ θ(π(a|x)) = θ(x). Second, we show that

⋂
MR ⊆ θ(z). Let (b, c) ∈ θ(x)

for all x ∈ R. Then we have π(a|x) ‖ π(b|x) = π(c|x) for all x ∈ R. Since the⋂
x∈R π(a|x) ⊇ {a} and

⋂
x∈R π(b|x) ⊇ {b, c} we can use (P1) to conclude that

z =
∧

x∈R π(a|x) ‖
∧

x∈R π(b|x) =
∧

x∈R π(a|c). But this shows that (b, c) ∈ θ(z).
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For the other direction we have to show that A(E) is a complete affine ordered
set for a closed SER E := (E,D). We know already that A(E) is an affine
ordered set. So it remains to show that A(E)⊥ := ({([x]θ, θ) | θ ∈ D},≤′, ‖′)⊥
forms a complete lattice. We can consistently interpret ⊥ as (∅, ∅). Let S :=
{([x]θ, θ) | θ ∈ E}∪{(∅, ∅} and let R ⊆ S. We define

∧
R := (

⋂
π1(R),

⋂
π2(R)).

We have to show that
∧

R ∈ S. But since D is a closure system
⋂

π2(R) ∈ D
having

⋂
π1(R) as a class. ⊓⊔

5 Coordinatization

In this section we give characterizations for the previously studied structures to
be coordinatizable, that is, we characterize those structures whose carrier/point
set consistently can be seen as the carrier set of an algebra.

5.1 Coordinatization of Closed SERs

At first, we investigate under which conditions a closed SER E = (A,D) can
be coordinatized, that means, under which conditions there exists an algebra
A := (A, (f)I) with Con(A) = D.

In the context of a SER E we define the set of dilations ∆(E) of the SER as
all functions mapping points to points and respecting all equivalence relations in
E (a map δ ∈ AA respects an equivalence relation R on A if for all (a, b) ∈ R we
have (δ(a), δ(b)) ∈ R), that is, ∆(E) := {δ ∈ AA | δ respects all E ∈ D}. What
makes dilations so interesting is the fact that congruence relations can already
be characterized by their compatibility with unary polynomial functions. The
set of all unary polynomial functions of an algebra A is denoted by ∆(A).

Proposition 3 ([Ih93], Theorem 1.4.8). Let A := (A, (f)I) be an algebra
and θ ∈ EqA. Then θ ∈ Con(A) if and only if θ respects all δ ∈ ∆(A).

Now it is easy to see that the dilations of a closed SER subsume the unary
polynomial functions of a coordinatizing algebra if it exists.

Proposition 4. Let A := (A, (f)I) coordinatize E := (A,D). Then ∆(A) ⊆
∆(E).

Proof. We get a well known Galois connection between the set EqA of all equiva-
lence relations on a set A and the set of all unary operations Op1(A) on that same
set if we define the relation I ⊆ EqA×Op1(A) via EIδ ⇐⇒ δ respects E. Since
if A := (A, (f)I) coordinatizes E by Proposition 3 we have ∆(A)I = Con(A),
and since ·II is a closure operator we get ∆(A) ⊆ ∆(A)II = ∆(E).

The following proposition gives an constructive view on the principal con-
gruence relations of an algebra which will be useful in the proof of our charac-
terization theorem for closed SERs.
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Proposition 5. Let A := (A, (f)I), let θ(a, b) ∈ Con(A) denote the least con-
gruence relation θ with (a, b) ∈ θ, and let ∆(A) denote the set of all unary poly-
nomial functions of A. Then θ(a, b) is the reflexive, symmetric, and transitive
closure of

∆(a, b) := {(δa, δb) | δ ∈ ∆(A)}.

The next theorem gives a characterization of coordinatizable closed SERs.
Note that other characterizations of the set of congruence relations of an algebra
are known, e.g. compare [Ih93], p. 56, Theorem 3.4.5. Before presenting our char-
acterization which aims at providing some analogies to Theorem 3.5 in [Wi70]
(where a geometry is coordinatized by the (not labeled) congruence classes of
an algebra), we need one more definition:

Definition 9. Let A be a set, let B ⊆ A, and let ∆ be a set of maps from
A to A. Then we define a relation ≡⊆ A × A such that for a, b ∈ A we have
a ≡ b mod (B,∆) if and only if there exist δi ∈ ∆ for i = 0, ..., n with a ∈
δ0(B) & b ∈ δn(B) & δi(B) ∩ δi+1(B) 6= ∅ for i ∈ {1, ..., n − 1}.

Theorem 2. Let E = (A,D) be a closed SER. Then there exists an algebra
A := (A, (f)I) with Con(A) = D if and only if

(E1) (c, d) ∈ θ(a, b) ⇐⇒ c ≡ d mod ({a, b},∆(E))
(E2) [(a, b) ∈ θ ⇒ θD(a, b) ⊆ θ] ⇐⇒ θ ∈ D.

A relation R which fulfills the left hand side of the equivalence (E2) is called
one-closed with respect to the closure operator θD. Then condition (E2) can be
understood as saying that a one-closed relation is already closed.

Proof. “⇒”: Let A := (A, (f)I) be an algebra with Con(A) = D and let (c, d) ∈
θ(a, b). We will show that the conditions (E1) and (E2) hold. Since θ(a, b) is
the least congruence relation in Con(A) containing (a, b), we know by Proposi-
tion 5 that θ(a, b) is the reflexive, transitive, and symmetric closure of ∆(a, b).
Therefore there exist mappings δ1, ..., δn ∈ ∆(A) with δ0(a) = c, δn(b) = d, and
δi ∩ δi+1 6= ∅ and, using Proposition 4, we have c ≡ d mod ({a, b},∆(E)), which
verifies condition (E1). To verify condition (E2), let θ be one-closed in Con(A).
Now assume θ /∈ Con(A). Then there exist (aj , bj) ∈ θ for j = 1, . . . , n such that
for some operation f of A with arity n we have (f(a1, . . . , an), f(b1, . . . , bn)) /∈ θ.
But let us consider the unary polynomial functions Γi : A → A for i = 1, . . . , n
where Γi(x) := f(b1, . . . , bi−1, x, ai+1, . . . , an). We get

Γ1(a1) = f(a1, a2, a3, . . . , an)
θ(a1, b1) Γ1(b1) = f(b1, a2, a3, . . . , an)
= Γ2(a2) = f(b1, a2, a3, . . . , an)
θ(a2, b2) Γ2(b2) = f(b1, b2, a3, . . . , an)

...
θ(an, bn) Γn(bn) = f(b1, . . . , bn−1, bn).

Since θ is one-closed, we receive θ(ai, bi) ⊆ θ for i = 1, . . . , n, and therefore, it
follows that (f(a1, . . . , an), f(b1, . . . , bn)) ∈ θ, a contradiction.
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“⇐”: Now let E = (A,D) be a closed SER satisfying condition (E1) and (E2).
We will show that D = Con(A) for A := (A,∆(E)). By definition of ∆(E)
all relations in D are congruence relations of the constructed algebra, that is,
D ⊆ Con(A). It remains to show that D is “sufficiently large”. For this we
deduce that a congruence relation fulfills the left side of the equivalence (E2). Let
θ ∈ Con(A) and (a, b) ∈ θ and (c, d) ∈ θD(a, b). We have to show that (c, d) ∈ θ.
Since θD(a, b) ∈ D by (E1) we get c ≡ d mod ({a, b},∆(E)) which yields the
existence of δi ∈ ∆(E) for i = 0, 1, . . . , n with a ∈ δ0({a, b}) & b ∈ δn({a, b}) &
δi({a, b})∩δi+1({a, b}) 6= ∅ for i ∈ {1, 2, .., n−1}. Since θ is a congruence relation
(δi(a), δi(b)) ∈ θ. Transitivity yields (δ0(a), δn(b)) = (c, d) ∈ θ. This completes
the proof.

⊓⊔

5.2 Coordinatization of Complete Affine Ordered Sets

In the following we investigate under which conditions a complete affine or-
dered set C can be coordinatized, that means, under which conditions there
exists an algebra A such that the elements of the complete affine ordered set
can be interpreted as the labeled congruence classes of the algebra, precisely
C ≃ A(Con(A)).

In the language of complete affine ordered sets the notion of a dilation reads
as:

Definition 10. Let C := (Q,≤, ‖) be a complete affine ordered set. Then we
call a self map δ on A(Q) a dilation if for all a, b ∈ A(Q) it holds that δ(a) ≤
π(δ(b)|a ∨ b). The set of all dilations of a complete affine ordered set is denoted
by ∆(C).

The dilations of a complete affine ordered set coincide with the dilations of
its associated closed SER:

Proposition 6. Let C := (Q,≤, ‖) be a complete affine ordered set. Then we
have ∆(E(C)) = ∆(C).

Proof. Let a, b ∈ A(Q). We have δ(a) ≤ π(δ(b)|a∨ b) if and only if (δ(a), δ(b)) ∈
θ(a ∨ b). ⊓⊔

Using Proposition 4 we see that the dilations of a complete affine ordered set
also subsume the unary polynomial functions of a coordinatizing algebra if such
an algebra exists.

For a complete affine ordered set C, we call a partition (Ci)i∈I of the points
of C compatible if for all δ ∈ ∆(C) and for all i ∈ I if a, b ∈ Ci there exists a
j ∈ I such that δ(a), δ(b) ∈ Cj . Now we can state the coordinatization theorem
for complete affine ordered sets as follows.

Theorem 3 (coordinatization of complete affine ordered sets). Let C :=
(Q,≤, ‖) be a complete affine ordered set. Then C can be coordinatized if and
only if
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(C1) for any compatible partition (Ci)i∈I of A(Q) there exist (xi)i∈I with Ci =
A(xi) for i ∈ I and xi ‖ xj for all i, j ∈ I.

Proof. “⇒”: Let A := (A, (f)I) be an algebra that coordinatizes C. To show (C1)
let (Ci)i∈I be a compatible partition of A(Q). By supposition C is isomorphic to
A(Con(A)). So we know there exists an isomorphism ǫ : Q −→ QA. The points
of A(Con(A)) are of the form {(a,∆A), | a ∈ A} and since we can identify
points of C with points of A(Con(A)) via ǫ we can also identify them with
the carrier set A of A. So we can recognize Ĉ :=

⋃
i∈I C2

i as a congruence
relation since the dilations of C subsume the unary polynomial functions of A
and by Proposition 3 this is enough. But since Ĉ is a congruence relation we
know that (Ci, Ĉ) are mutually parallel subspaces of A(Con(A)). And since
A(ǫ−1(Ci, Ĉ)) = ǫ−1(A(Ci, Ĉ)) = ǫ−1({(c,∆A) | c ∈ Ci}) = Ci we know that the
required xi exist and equal ǫ−1(Ci, Ĉ).
“⇐”: Let (C1) hold for a complete affine ordered set C. In the following we
will show that AC := (A(Q),∆(C)) coordinatizes C. It suffices to prove that
E(C) = Con(AC) since by Theorem 2 in [KS04] we know that C ≃ A(Con(AC))
is equivalent to E(C) ≃ EA(Con(AC)) ≃ Con(AC). Let θ ∈ E(C). Obviously,
for (a, b) ∈ θ we have that (δ(a), δ(b)) ∈ θ since δ is a dilation. Now assume
that θ ∈ Con(AC). Then {[a]θ | a ∈ A} constitutes a compatible partition of C
since dilations respect the congruence relations of AC by construction. But this
implies the existence of (xi)i∈I with xi ‖ xj and A(xi) = [a]θ for some a ∈ A
and we have θ = θ(xi) ∈ E(C) for an arbitrary i ∈ I. ⊓⊔

For a complete affine ordered set we can define a closure operator H on the
set of points A(Q) via H(P ) := A(

∨
P ) for P ⊆ A(Q). If a complete affine

ordered set can be coordinatized this closure operator coincides with the closure
operator assigning to each set of elements of an associated algebra the smallest
congruence class they are contained in.

6 Outlook

As a congruence class geometry [Wi70] is a closure structure (A, [·]) derived
from an algebra A := (A, fI) where [·] assigns to a set C ⊆ A the smallest
congruence class [C] where C is contained in, it would be challenging to in-
vestigate the connection between complete affine ordered sets and congruence
class geometries. Especially, this could enable utilitizations for data represen-
tations, since techniques for using congruence class geometries for data rep-
resentation were insinuated in [Ka05]. For coordinatizable complete affine or-
dered sets, the structure (A,H) – where H is defined as in the previous sec-
tion – is already a congruence class geometry which “sits” in the affine ordered
set. A first step could be to study the function which maps a coordinatizable
affine ordered set onto the closed sets of a congruence class geometry of the
respective algebra, denoted by Kon(A), via “forgetting the labels”; if we define
Konl(A) := {(A, θ) ∈ Kon(A) × Con(A) |A is a class of θ} this map is given
by ϕ : Konl(A) → Kon(A) with ϕ((A, θ)) := A. The map ϕ is

∨
-preserving
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and therefore residuated (if we attach bottom elements to source and target).
Another viable extension of this line of research is constituted by the problem
of coordinatizing projective ordered sets, the fourth categorical counterpart to
simple many-valued contexts as formulated in [KS04].
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