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Abstract. This paper deals with the problem of mining very large dis-
tributed databases. We propose a distributed data mining technique
which produces a meta-classifier that is both predictive and descrip-
tive. This meta-classifier is in the form of a set of classification rules,
which could be refined then validated by fine-tuning its rule set using
a concept lattice. A detailed description of this method is presented in
the paper, as well as the experimentation proving the viability of our
technique and the usefulness of using a concept lattice to validate rules
of a meta-classifier.

1 Introduction

We witness nowadays an explosion of electronic data. Indeed, almost everything
(grocery, medical file, car repair history, etc.) is recorded on databases for future
analysis. For this analysis many centralized data mining tools exist but with the
increasingly bigger databases, these tools are very time-consuming.

furthermore, distributed data mining tools are created as an alternative to
centralized ones, when data are inherently distributed or when distributing data
can speed-up the processing time. This paper deals with a distributed data
mining algorithm which produces a meta-classifier in form of a set of classification
rules. This set of rules could be refined then validated using a concept lattice.
As it will be shown, one of the advantages of these refinement and validation
steps is to reduce the meta-classifier size in terms of its number of rules, which
is very helpful for a human analyst.

The paper proceeds as follows. In Section 2, we present the proposed tech-
nique of distributed data mining where we detail the use of a concept lattice
to fine-tune the resulting meta-classifier. In Section 3, we present experimental
results which prove the viability of our method. We finally present a conclusion
and our future work.
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2 The Proposed Meta-Classifier

Before detailing the proposed meta-classifier, we have to note that our meta-
classifier is formed by a set of classification rules having a non disjoint coverage.
Compared to existing techniques, all algorithms found in the literature produce
a meta-classifier in the form of a disjoint cover set of rules [1] [2] [3]. Hence,
the key subject of this paper, namely the validation of non disjoint rules using
concept lattices is not comparable to any existing work.

The proposed algorithm goes roughly through two tasks: a distributed one
achieved by “miner agents” which have to mine distributed databases on remote
sites and to extract useful information, and a centralized task achieved by a
“collector agent” which is responsible of aggregating information gathered by
miner agents in order to produce the meta-classifier. Hereafter, we detail the
tasks of these two types of agents.

2.1 The Tasks of a Miner Agent

We have already detailed the task of a miner agent in previous papers [4] [5] [6].
In what follows we just present an overview of these tasks through the algorithm
of Fig 1.

Do, by a miner agent Ami, working on database DBi on a remote site:

1. Apply on DBi a classification algorithm producing a set of rules

with disjoint cover. The produced set is: Ri = {rik | k ∈ [1..ni]} where

ni is the number of rules;
2. Compute for each rik a confidence coefficient crik

;
3. Extract a random sample Si from DBi.

Fig. 1. Algorithm showing the tasks of a miner agent.

The algorithm of Fig. 1 shows that a miner agent produces a set of clas-
sification rules, called base classifier, then computes for each rule a confidence
coefficient. This coefficient, as its name suggests, reflects the confidence that
we have in each rule based on some statistic means [4]. The sample Si is used,
later by collector agent, in the process of rule validation. The size of this sample
should be very small in order to reduce the amount of data travelling from the
database site to the collector agent site.

2.2 The Tasks of a Collector Agent

The tasks of a collector agent are detailed in Fig. 2. This algorithm shows that
a collector agent starts by aggregating all rules in order to produce our meta-
classifier, R. Indeed, the simple aggregation of base classifiers could represent a
good predictive meta-classifier [4].
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Do, by a collector agent CA, on the central site:

1. Main step: Create the primary meta-classifier R as follows:

R =
S

i=1...nd Ri where nd is the number of sites

2. Optional refinement step: From R, eliminate rules which have a

confidence coefficient lower than a certain threshold t (determined

empirically) and produce Rt:

Rt = {rik ∈ R | crik
≥ t};

3. Optional validation step:

(a) Create S as follows:

S =
S

i=1...nd
Si;

(b) Create a binary relation I defined over Rt × S where, at each

intersection (ri, sj), we find 0 if ri does not cover sj, 1
otherwise ;

(c) Apply on I an algorithm in order to produce a Galois lattice G;
(d) Use G to validate rules in Rt and produce the meta-classifier

RG
t

Fig. 2. Algorithm showing the tasks of a collector agent.

The main problem that turns up from using the meta-classifier R as a de-
scriptive tool could be the number of rules proposed to the user in order to
explain the predictive class of a new object. In fact, the aggregation of x rules
from n databases produces in the worst case nx rules. The subsequent steps
(the refinement and the validation steps) are proposed to fix this disadvantage.
In fact, the refinement step, proposes to remove from R rules that according to
their confidence coefficient would not have a good prediction capability when
used with new objects. The resulting meta-classifier is the set Rt. The validation
step, which is the core of this paper, uses some samples to fine-tune rules in Rt

by identifying those that actually have poor prediction performance according
to samples. The validation process is detailed hereafter.

2.3 Use of Galois lattice to Fine-Tune a Set of Rules

The Galois lattice G is built over the binary relation I defined over Rt × S.
Consequently, each formal concept (Rules, Objects) of G contains maximal pairs
of objects and rules covering them. Thus, the obtained lattice represents a preset
hierarchy of generalization/specialization of maximal pairs of rules and objects
that they cover. This hierarchy presents various advantages; we enumerate a few
of them hereafter:

– If there exist two rules covering the same object but predicting different
classes, called rules in conflict, these rules will necessarily appear in at least
one concept of the lattice. In these concepts we find all rules in conflict, and
the objects that they cover.

The Use of Galois Lattices to Fine−Tune a Meta−Classifier

47



– In order to delete a rule r from the lattice, we do not need to visit each
concept. We must just find the first concept that contains the first occurrence
of r when we go upwards in the lattice. Then, all the occurrences of this rule
will be in concepts that are superconcepts of the latter identified one. This
is due to the structure of the lattice, where when we go up from the bottom
most to the upper most concept, the extension of a concept (i.e., rules) is
enriched while intention (i.e., objects) is impoverished. In other words, when
we go up in the lattice, the number of rules increases thus together they will
cover fewer objects.

– Rules in a concept are coded by their numbers. Thus their treatment is very
fast since the coverage of each rule is already computed and stored in the
lattice. The only information that we may need, the conclusion of the rule,
could be obtained instantly.

In order to simplify the presentation of the algorithm that uses G to validate
the rules, we present in the following some notation and terminology:

1. Our algorithm manipulates only binary databases denoting by “+” and “−”
(positive and negative class) the two classes of the data set. Nevertheless, it
could be extended to handle multiple class systems.

2. We note by cpt a concept of the lattice, Rcpt its extension and Ocpt its
intention.

3. We call a positive rule (resp. a negative rule), a rule having the positive
(resp. negative) class as conclusion.

4. We borrow some notation and terminology from [7], as we call the least

concept the bottom most concept of the lattice. It contains no rules and all
the objects. Dually, we call the largest concept the upper most concept of
the lattice. It contains all the rules and no objects.

5. We note by NbRules(ARuleSet) (resp. NbObjects(AnObjectSet)) the func-
tion that returns the number of rules in the rule set ARuleSet (resp. objects
in the set of objects AnObjectSet).

6. We note by RulesOfTheClass(ARuleSet, clas) the function that returns
rules of the set ARuleSet belonging to the class clas (clas ∈ {+,−}). The
result is a set of rules.

7. We note by ObjectsOfTheClass(AnObjectSet, clas) the function that re-
turns objects of the set AnObjectSet belonging to the class clas. The result
is a set of objects.

8. NbObjects(ObjectsOfTheClass(Ocpt, +)) (resp.
NbObjects(ObjectsOfTheClass(Ocpt,−))) is abbreviated by NbObj+

cpt

(resp. NbObj−cpt).
9. NbRules(RulesOfTheClass(Rcpt, +)) (resp.

NbRules(RulesOfTheClass(Rcpt,−))) is abbreviated by NbRules+
cpt

(resp. NbRules−cpt).

How to Use a concept lattice. We bring to mind that we use a concept
lattice in order to validate the rules of Rt that statistically (according to the
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confidence coefficient) should behave well when faced with new objects. This
validation consists of choosing among rules that do not correctly predict the
class of objects of S those to keep in the final meta-classifier RG

t . In other words,
it consists of identifying rules to delete from Rt so that each conflicting rule is
assessed. The successful rules are assigned to RG

t .
To achieve its task, the validation algorithm starts by identifying concepts

having conflicting rules. To do this, we compute for each concept the number
of positive rules (NbRules+

cpt), the number of negative rules (NbRules−cpt), the

number of objects belonging to the positive class (NbObj+
cpt), and the number

of objects belonging to the negative class (NbObj−cpt). Then we associate to each
concept a label (“+”, “−” or “?”) according to the majority of rules. The label
“?” is associated to a concept if the number of positive rules equals the number
of negative rules (See (1))

Label(cpt) =







+ If NbRules+
cpt > NbRules−cpt

− If NbRules+
cpt < NbRules−cpt

? Otherwise
(1)

We have to note that the labelling of concepts could be done during the
construction of the lattice, at a negligible cost. Once the labelling of concepts is
done, we could resume the algorithm as follows:

1. Go through the lattice from the least to the largest concept.
2. At the first concept containing rules in conflict, we identify rules belonging

to the minority class that we will call them problematic rules. These rules are
positive rules if the concept is labelled negative et vice-versa. If the concept
is labelled “?”, all its rules are considered problematic (See (2)). In other
words, problematic rules are rules that should not be in the concept and
hence, eventually, should not be in the final meta-classifier.

PrbRules(cpt) =







RulesOfTheClass(Rcpt, +) If Label(cpt) = −
RulesOfTheClass(Rcpt,−) If Label(cpt) = +

Rcpt If Label(cpt) = ?
(2)

3. In order to assess the impact of suppressing a rule from the lattice, we
associate to each concept a cost function. Lets explain this function through
an example. Figure 3(b) details class distribution of the concept of Fig 3(a).
We can easily notice that rule F is a problematic one since it is in conflict
with rules C and E.

C, E, F 1, 11, 15, 18

(a) Example of a concept

C(+),E(+),F(−) 1(+),11(+),15(+),18(−)

(b) Class distribution in the concept

Fig. 3. An example of a concept from the lattice.

It is clear that suppressing the rule F from this concept has a positive effect
or at least no effect, since the majority of objects and the majority of rules
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belong to the positive class whereas F is a negative rule. And this is the case
of all problematic rules where by definition they are rules belonging to the
minority class. Consequently, the cost function for suppressing a problematic
rule is computed through out all concepts that contain it. Fortunately, the
lattice restrains our exploration of concepts where F will appear only in
those that are superconcepts of the bottom most concept containing the
first occurrence of the rule under consideration (See Fig. 4).

C,E,F 1,11,15,18

B,C,E,F 11,15,18A,C,E,F,G 1

Fig. 4. Example of superconcepts of the one of Fig. 3.

4. The cost function that we proposed represents the gain of objects correctly
classified minus the loss of objects incorrectly classified when the label of the
concept changes (designated by function MP ). In other words, suppose that
we suppress from the concept of Fig. 3 the rule C or E. In that case the label
of the concept passes from “+” to “?”. The cost of this action according to
our function is −3+1 = −2 since objects 1, 11 and 15 are no longer correctly
classified and the object 18 gains in classification since we consider that the
class “?” is closer to “−” than “+” is close to “−”.

5. For presentation purposes, we denote by cpt′ the concept cpt abated by
problematic rules. Hence, our cost function could be defined as follows:

Cost(cpt) =























0 If Label(cpt) = Label(cpt′)
NbObj−cpt − NbObj+

cpt If (Label(cpt), Label(cpt′)) ∈
{(+,−), (+, ?), (?,−)}

NbObj+
cpt − NbObj−cpt If (Label(cpt), Label(cpt′)) ∈

{(−, +), (−, ?), (?, +)}

6. This cost is iteratively repeated on the remaining of the lattice by suppress-
ing the same rule already identified as problematic. If the final cost over
the lattice is positive, thus it is advantageous to eliminate the rule from the
concept and vice versa. If the final cost equals zero it is neither advanta-
geous nor disadvantageous to keep or to ignore the rule. Actually, keeping
or ignoring these rules (that we call “limit rules”) produces two variants of
cost function according to the decision taken about these rules.

7. The process of identifying problematic rules and computing the result of the
cost function is also done over all possible combinations of problematic rules
in one concept. So 2n − 1 rule subsets could be assessed if n is the number
of problematic rules (obviously, the empty set is ignored). In other words,
if in one concept there is more than one problematic rule, we compute the
powerset of problematic rules and then for each set from the powerset the
process described above is conducted.
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Cost Function Variants. The first variant of cost function is deduced from the
use of the label “?” where it can be considered as an intermediate class between
the “+” and “−”. This function is designated by MPQM . Thus when the label of
a concept goes from “−” to “+” by removing rules identified as problematic, the
cost function returns twice the difference between positive and negative objects
and vice versa. Whereas, when “?” appears as the label of the concept before or
after removing problematic rules, the cost function returns a simple difference.

Another variant of cost function could be proposed by considering only the
sign of the difference. Thus this binary function (designated by function BIN)
return only +1, −1 or 0 according to the sign of the difference and the change
of label.

The last variant proposed is deduced from the BIN function when consider-
ing “?” as an intermediate class. Thus, when the label changes going from “+”
to “−” or inversely, the BINQM function returns ±2, otherwise it returns ±1
or 0 if there is no label change.

2.4 The Use of Set R as a Meta-Classifier

The set R represents the aggregation of all base classifiers (R = ∪iRi). This rule
set is used as a predictive model as well as a descriptive one. From a predictive
point of view, the predicted class of a new object is the class predicted by a
majority vote of all the rules that cover it, where the rules are weighted by their
confidence coefficients1.

It is to be noted that any object can be covered by at most nd rules –knowing
that nd is the number of sites. The number of rules is not exactly equal to nd
because the confidence coefficient determination process could fail in certain
circumstances, due to a lack of cover, and consequently the rule in question
would be ignored. Besides, by gathering the sets Ri, a rule can appear in more
than one base classifier. In this case, only one occurrence of the rule is kept by
assigning it with a confidence coefficient equal to the mean of the confidence
coefficients of its various occurrences.

From a descriptive point of view, rules which cover an object explain its class
even in the case of a tie of the simple and/or the weighted majority vote. As the
whole system is developed as support to decision-making, the rules covering an
object maybe proposed to the user who could then judge, from his expertise, of
their relevance. Presenting to a decision maker more than one rule in order to
explain the class of an object may have its advantages since this provides a larger
and more complete view of the “limits” of each class. We bring to mind, that
in machine learning, the limit which defines separation between various classes
is generally not unique nor clear cut, and consequently, several rules producing
the same class can represent the “hyper-planes” separating the various classes,
providing various views on these data.

1 However, in a tie situation, we propose to carry out a simple majority vote. In rare
cases, when the simple majority vote leads to a tie, we choose the majority class in
the different training sets.
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3 Experiments

To assess the performance of our meta-learning method, we conducted a battery
of tests in order to assess its prediction (accuracy) rate and its size (i.e., the
number of rules it produces). We compared it to a C4.5 algorithm built on the
whole data set, i.e., the aggregation of the distributed databases. This C4.5,
produces the rule set R′, which is used as a reference for its accuracy rate since
we assumed in the introduction that it is impossible to gather all these bases
onto the same site, and this, either because of downloading time, or because of
the difficulty to learn from the aggregated base because of its size.

For this purpose we ran the following 4 experiments:

Exp. 1: Find the best threshold t for producing the meta-classifier Rt.
Exp. 2: Find the best pair (t, Costfunction) for producing RG

t .
Exp. 3: Compare R, Rt and RG

t to R′ on the basis of accuracy.
Exp. 4: Compare R, Rt and RG

t to R′ on the basis of the size of their rule set.

All these experiments have been tested on ten data sets: adult, chess end-
game (King+Rook versus King+Pawn), Crx, house-votes-84, ionosphere, mush-
room, pima-indians-diabetes, tic-tac-toe, Wisconsin Breast Cancer (BCW)[8]
and Wisconsin Diagnostic Breast Cancer (WDBC), taken from the UCI repos-
itory [9]. The size of these data sets varies from 351 objects to 45222 objects.
Please note that we deleted from these data sets objects with missing values, and
we have mixed them up in order to avoid “sorted” bases. Furthermore, in order
to get more realistic data sets, we introduced noise in the ten aforementioned
databases, and this by reversing the class attribute2 of successively 10%, 20%,
25% and 30% of each data set objects. Hence, since for each data set we have,
in addition to the original set, 4 other noisy sets the total number of databases
used for our tests is 50.

In order to simulate distributed data sets, we did the following. We divided
each database into a test set with proportion of 1/4. This data subset was used as
a test set for our meta-classifier and for R′, our reference classifier. The remaining
data subset (of proportion 3/4), was divided in its turn randomly into 2, 3, 4
or 5 data subsets in order to simulate distributed databases. The size of these
bases was chosen to be disparate and in such a way such there was a significant
difference between the smallest and the biggest data subset. As an example of
such subdivision see Fig. 5.

For the construction of the base classifiers we used C4.5 release 8 [10] which
produces a decision tree that is then directly transformed into a set of rules. For
the concept lattice construction we used the algorithm proposed in [11].

3.1 Experiment 1: Best Parameter t for Rt

In order to find the best t for Rt, we tried all values ranging from 0.95 to 0.20,
with decrements of 0.05 and 0.01. The analysis of results that we got for Rt over

2 Please note that all data sets have a binary class attribute.

Mohamed Aoun−Allah and Guy Mineau CLA 2006

52



(3/4=4452 objets)

mush3.test (2670 obj.) = mush1.data + mush2.data

mush2.test (2817 obj.) = mush1.data + mush3.data

mush1.test (3417 obj.) = mush2.data + mush3.data

mush3.data (1782 obj.)mush2.data (1635 obj.)

(1/4=1484 objets)

mushroom.data

mushTest.datamushTest.test

mush1.data (1035 obj.)

(5936 objets)

Fig. 5. Example of subdivision for a database from the UCI.

the 50 data sets show that the minimum error rate of Rt is obtained in almost
all the cases with the threshold t = 0.95 or t = 0.01. When this is not the case,
the error rate of Rt, with t = 0.95 or t = 0.01, is worse than the minimum error
rate by no more than 0.1% except for the Pima-Indians original database where
the difference is 1%.

The choice of a high threshold (such as 0.95) suggests that keeping only rules
with a high value of the confidence coefficient produces good results. Moreover,
a threshold as low as 0.01 signifies that the aggregation of almost all the rules
produces also good results thanks to the weighted majority vote. So weighting
the rules by this confidence coefficient seems to be quite sufficient to provide our
method with a satisfactory accuracy rate.

In order to choose between these two thresholds, we draw a table of the
number of occurrences for which they produce the minimum error rate. In the
case where the best accuracy is obtained with t′ which is neither 0.01 nor 0.95,
we count t′ either with 0.01 or 0.95 depending if it is closer to the first or to the
second threshold.

From table 1 we can choose the threshold 0.01 as the best one since it pro-
duces the minimum error rate of Rt in the majority of the cases.

Table 1. Number of occurrences of the minimum of Rt error rate with 0.01 and 0.95.

Bases Min with 0.01 Min with 0.95 Error rate steady

Original databases 6 3 2

Bases with 10% noisy 3 3 4

Bases with 20% noisy 4 1 5

Bases with 25% noisy 3 5 3

Bases with 30% noisy 4 3 3

TOTAL 20 15 17

3.2 Experiment 2: Best Pair (t, CostFunction) for R
G
t

We start by identifying the threshold t that produces the minimum error rate of
RG

t when considering the four cost function (MP , MPQM , BIN and BINQM)
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presented above with for each one a little variant by taking or ignoring limit
rules for a total of 8 functions. We did the same analysis that for Rt and we
found that t = 0.01 produces a score of 124 occurrences of the minimum and 41
occurrences to be closest to the minimum than 0.95. Where the later threshold
produces a score of 116 occurrences and 34 occurrences closest to the minimum.
Consequently, we can assume that the threshold t = 0.01 is the best for RG

t too.
This very low threshold suggests that the proposed technique is robust faced
to poor rules. Moreover, it could take into account almost all rules that the
validation process will approve or eliminate.

Once threshold t fixed, we have to find the best cost function. To do so, we
analyze the Table 2 that presents which of the cost function produces the mini-
mum error rate of RG

t . The winning function is clear that it is the “MPQM” or
“MP” taking into account limit rules (LR). Functions “BINQM” and “BIN”
with limit rules produce also good results but they are slightly less efficient from
a prediction point of view than their competitors.

Table 2. Number of bases for which cost functions produce RG
t minimum error rate.

Original
DB

10% noisy
DB

20% noisy
DB

25% noisy
DB

30% noisy
DB

Σ

MPQM with LR 4 5 4 3 2 18

MPQM without LR 3 4 1 3 2 13

MP with LR 4 5 4 4 2 19

MP without LR 3 4 1 3 2 13

BINQM with LR 6 2 4 1 3 16

BINQM without LR 3 3 1 4 2 13

BIN with LR 6 2 3 1 4 16

BIN without LR 3 3 1 4 2 13

3.3 Experiment 3: Compare R, Rt and R
G
t

to R
′ on the Basis of

Accuracy

Once parameters for Rt and RG
t has been found, we can compare the prediction

performance of our meta-classifiers R, Rt and RG
t to the classifier R′ used as

reference since it is the ideal case. To do so, we compare R′ with its error rate
confidence interval (lower and upper bounds) computed at 95% confidence to
our meta-classifiers, over the original databases and over the noisy databases.

As a detailed citation of these results needs more than a few pages, we will
restrain our presentation to the most important results. Indeed, we can resume
our observations to the following:

1. The prediction performance of R are very comparable to R′ since in 34 cases
over 50, the error rate of R is statistically comparable (with 95% confidence)
to that of R′. It worsens only in 5 cases but it improves in 11 cases.

2. The sets R and Rt have sensibly the same error rate except for 6 cases where
in two of them the error rate of Rt is worse than that of R by no more than
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0.1% (which is not a significant difference) and in the 4 other cases Rt do
better than R with an error rate difference ranging from 1.1% to 3%. Hence,
we can conclude that Rt, in general, does predict as well as R or better.

3. Globally, Rt and RG
t present comparable prediction performance. Indeed,

over the 50 data sets, RG
t presents exactly the same error rate over 30 data

sets, better error rate for 11 data sets with a difference of at most 4.7% and
a worse error rate for only 9 cases with a difference of at most 2.1%.

4. When databases are very noisy, our meta-classifiers R, Rt and RG
t produce

better error rates (statistically, with confidence of 95%) than R′. We conclude
that the error rates of R are comparable to R′, but that R outperforms R′

as noise increases in the data set.

The reader should notice that even if Rt or RG
t does not significantly improve

R in terms of its error rate, applying the threshold t then validating rules offers
some advantages, like decreasing the meta-classifier size.

3.4 Experiment 4: Compare R, Rt and R
G
t

to R
′ on the Basis of the

Size of their Rule Set

Table 3 presents the number of rules in the classifiers: R′, R, Rt and RG
t . It

is clear from this table that R, Rt and RG
t have a relatively low number of

rules which is in certain circumstances inferior that the number of rules in our
reference classifier R′. This result is very encouraging since our meta-classifier
can be seen as neither more difficult nor easier to interpret than R′.

Table 3. The number of rules in each rule set.

Adult BCW Chess Crx Iono. Mush. Pima. Tic. Vote Wdbc

R′ 523 10 31 25 7 24 21 69 5 11

R 592 50 54 23 11 11 30 77 10 18

Rt 482 33 54 20 9 11 26 64 6 17

RG
t 469 32 46 19 9 11 26 61 6 17

Moreover, we can easily observe that the refinement step as well as the val-
idation steps are very useful since they can reduce the number of rules in R
significantly. For instance we have a reduction of 40.0%, 36.0%, 20.8% and 20.8%
for respectively Vote, BCW, Adult and Tic-Tac-Toe data sets.

4 Conclusion

The objective of this paper is to present an application of concept lattices to a
distributed data mining technique (DDM). This technique goes globally through
two steps. The first one is to mine in a distributed manner each data set, then
in centralized site information gathered from the first process is aggregated.
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Concept lattices play a key role in this aggregation process, where they are used
to fine-tune rule sets.

We have demonstrated in this paper that concept lattices could be very useful
in DDM. Indeed, from a prediction point of view a validated meta-classifier (i.e.,
rules of the meta-classifier are validated by a concept lattice) performs as well
as or even better, than a classifier built on the whole data set, which is used as
a reference, depending on the level of noise in it. Moreover, from a description
point of view (i.e., number of rules in the classifier), the size of validated meta-
classifier is usually comparable to that of the reference centralized classifier.
When we compare the simple rule sets aggregation with this set refined then
validated by a Galois lattice, a significant decrease of the set of rules (up to
40%) could be observed.

Although the preliminary results as presented in this article are encouraging,
real world experiments will soon be the subject of experimentation.
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rapide et efficace. Revue des Nouvelles Technologies de l’Information, extraction
et gestion des connaissances 1(RNTI-E-6) (2006) 95–106

5. Aounallah, M., Quirion, S., Mineau, G.: Forage distribué des données : une com-
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