
Usage of Genetic Algorithm for Lattice Drawing

Suhail Owais, Petr Gajdoš and Václav Snášel

Department of Computer Science,
VŠB - Technical University of Ostrava,

tř. 17. listopadu 15, 708 33 Ostrava-Poruba
Czech Republic

Suhail.Owais@vsb.cz

Petr.Gajdos@vsb.cz

Vaclav.Snasel@vsb.cz

Usage of Genetic Algorithm for Lattice Drawing

Sahail Owais, Petr Gajdoš, Václav Snášel

Department of Computer Science,
VŠB - Technical University of Ostrava,

tř. 17. listopadu 15, 708 33 Ostrava-Poruba
Czech Republic

Suhail.Owais@vsb.cz

Petr.Gajdos@vsb.cz

Vaclav.Snasel@vsb.cz

Abstract. Lattice diagrams, known as Hasse diagrams, have played an
ever increasing role in lattice theory and fields that use lattices as a tool.
Initially regarded with suspicion, they now play an important role in
both pure lattice theory and in data representation. Using evolutionary
algorithms-genetic algorithms for drawing a lattice diagram is the main
goal of our research. It depends on stochastic methods on searching of
concepts’ positions, with trying to draw it with less number of intersec-
tions.

Keywords: FCA, Genetic Algorithm, Hasse Diagram

1 Graphic representation of concept lattice

These Hasse diagrams are an important tool for researchers in lattice theory and
ordered set theory and are now used to visualize data. This paper also shows a
new approach how to draw a Hasse diagrams using genetic algorithm.

In the following paragraphs we would like to mention known approaches of
lattice drawing and main points which make a Hasse diagrams or random graphs
more readable. After that we explain our approach and all important terms from
the area of genetic algorithms.

An ordered set P = (P,≤) consists of a set P and a partial order relation
≤ on P . That is, the relation ≤ is reflexive (x ≤ x), transitive (x ≤ y and y ≤
z ⇒ x ≤ z) and antisymmetric (x ≤ y and y ≤ x ⇒ x = y). If P is finite there
is a unique smallest relation ≺, known as the cover or neighbour relation, whose
transitive, reflexive closure is ≤. (Graph theorists call this the transitive reduct
of ≤.) A Hasse diagram of P is a diagram of the acyclic graph (P,≺) where the
edges are straight line segments and, if a < b in P, then the vertical coordinate
for a is less than the one for b. Because of this second condition arrows are
omitted from the edges in the diagram.

A lattice is an ordered set in which every pair of elements a and b has a least
upper bound, a ∨ b, and a greatest lower bound, a ∧ b, and so also has a Hasse
diagram.

Radim Bělohlávek, Václav Snášel (Eds.): CLA 2005, pp. 82–91, ISBN 80–248–0863–3.



Usage of Genetic Algorithm for Lattice Drawing 83

1.1 Known approaches of lattice drawing

By the 1970s diagrams had become an important tool in lattice theory. There
exist some known methods how to draw the Hasse diagrams. The first one it
called Hierarchical Layout Partially ordered sets, for the purposes of layout, are
seen as hierarchies. An annotated bibliography by Battista et. [1] describes the
approach as

A hierarchical drawing of an
acyclic diagram is an upwards

polyline drawing where the vertices
and bends are constrained

to lie on a set of equally spaced
horizontal lines.

Sugiyamas algorithm is typical of a variety of algorithms proposed for the layout
of such diagrams. There are three main steps of whole process.

1. Partition the vertices into layers.
2. Reduce the number of edge crossings by swapping the horizontal ordering of

vertices.
3. Minimize the number of bends, where bends are dummy nodes inserted to

ensure that lines travel only between adjacent layers.

Next there are additive or non additive diagrams and the methods to draw
Hasse diagrams which were introduced by Rudolf Willw [11]. But we can men-
tion the main points of each drawing.

These are the most important points to draw a readable graph:

– Avoid crossing of lines.
– Try to draw parallel lines.
– Identify known structures: cubes, rectangles . . .
– Layer the nodes: draw nodes on the same layer, if their concept’s extents

have the same size.
– Try to draw steep lines, avoid flat ones.

2 Evolutionary Algorithms

Evolutionary algorithms are stochastic search methods that mimic the metaphor
of natural biological evolution, which applies the principles of evolution found
in nature to the problem of finding an optimal solution to a solver problem. An
evolutionary algorithm is a generic term used to indicate any population-based
optimization algorithm that uses mechanisms inspired by biological evolution,
such as reproduction, mutation and recombination. Candidate solutions to the
optimization problem play the role of individuals in a population, and the cost
function determines the environment within which the solutions ”live” (see figure



84 Suhail Owais, Petr Gajdoš, Václav Snášel

1). Evolution of the population then takes place after the repeated application
of the above operators. Figure 1 shows the structure of a simple evolutionary
algorithm for solving a problem. Genetic algorithm is the most popular type of
evolutionary algorithms.

 

1. Evolutionary Algorithms 

Evolutionary algorithms are stochastic search methods that mimic the metaphor of 
natural biological evolution, which applies the principles of evolution found in nature to 
the problem of finding an optimal solution to a solver problem. 

An evolutionary algorithm is a generic term used to indicate any population-based 
optimization algorithm that uses mechanisms inspired by biological evolution, such as 
reproduction, mutation and recombination. Candidate solutions to the optimization 
problem play the role of individuals in a population, and the cost function determines the 
environment within which the solutions "live" [1]. Evolution of the population then takes 
place after the repeated application of the above operators. Figure 1 shows the structure 
of a simple evolutionary algorithm for solving a problem. Genetic algorithm is the most 
popular type of evolutionary algorithms. 

 
 

 

2. Genetic Algorithms (GA) 

Genetic algorithms (GA) described by John Holland in 1960s and further 
developed by Holland and his students and colleagues at the University of Michigan in 
the 1960s and 1970s [2]. GA used Darwinian Evolution to extract nature optimization 
strategies that use them successfully and transform them for application in mathematical 
optimization theory to find the global optimum in defined phase space [3, 4, 5]. 

GA is used to extract approximate solutions for problems through a set of 
operations “fitness function, selection, crossover, and mutation”. Such operators are 
principles of evolutionary biology applied to computer science. GA search process 

Coding of solutions 
Objective function 

Evolutionary operators

Problem 

 
selection 

mutation

fitness 
assign-
ment 

Recom-
bination 

Evolutionary 
Search Solution

Fig-1: Problem Solution Using Evolutionary Algorithm.
Fig. 1. Basic scheme of our solution.

3 Genetic Algorithms (GA)

Genetic algorithms (GA) described by John Holland in 1960s and further devel-
oped by Holland and his students and colleagues at the University of Michigan in
the 1960s and 1970s. GA used Darwinian Evolution to extract nature optimiza-
tion strategies that use them successfully and transform them for application in
mathematical optimization theory to find the global optimum in defined phase
space [4][5][6].

GA is used to extract approximate solutions for problems through a set of
operations ”fitness function, selection, crossover, and mutation”. Such operators
are principles of evolutionary biology applied to computer science. GA search
process depends on different mechanisms such as adaptive methods, stochastic
search methods, and use probability for search.

Using GA for solving most difficult problems that searches for accepted so-
lution; where this solution may not be the best and the optimal one for the
problem. GA are useful for solving real and difficult problems, adaptive and op-
timization problems, and for modeling the natural system that inspired design
[9][2].

Some applications that can be solved by GA are: Scheduling ’Job, and Trans-
portation Scheduling’, Design ’Communication Network design’, Control ’Gas
pipeline control’, Machine Learning ’Designing Neural Networks’, Robotics ’Path
planning’, Combinatorial Optimization ’TSP, Graph Bisection, and Routing’,
Signal Processing ’Filter Design’, Image Processing ’Pattern recognition’, Busi-
ness ’Evaluating credit risks’, and in Medical ’Studying health risks for a popu-
lation exposed to toxins’ [10].



Usage of Genetic Algorithm for Lattice Drawing 85

4 Genetic Algorithms Operators

Typically, any genetic algorithm used for purpose of optimization consists of the
following features:

1. Chromosome or individual representation.
2. Objective function “fitness function”.
3. Genetic operators (selection, crossover and mutation).

Where applying GA done over a population of individuals or chromosomes shows
that several operators are utilized. Presenting of GA process described in a
flowchart shown in 2.

4.1 Chromosome Encoding

Encoding by simple; representation of integer numbers by binary encoding. Rep-
resentation for chromosome (suggested solution) will be in a string of symbols to
simplify using of GA operators and to help in reproduction of optimal solution.
Encoding may be in string of bits, or in arrays, or in lists, or in tree structure,
and may be in other types. Some examples were shown in table 1.

Encoding Type Example

Binary Encoding 1101100100110110
Permutation Encoding 8 5 6 7 2 3 1 4 9
Value Encoding (back), (back), (right), (left)

Table 1. Examples for encoding types

4.2 Objective Function

The goal of GA is to find a solution to a complex optimization problem, which
optimal or near-optimal. GA searches for better performing candidates, where
performance can be measured in terms of objective”fitness” function. The ob-
jective is to choose the proportion of financial assets to hold in a portfolio such
that risk is minimized given the constraint of achieving a specified level of re-
turn. Fitness function does as a metrics to measure scheduler performance for
each chromosome in the problem.

4.3 Selection Operator

Selection determines which solution candidates are allowed to participate in
crossover and undergo possible mutation. Select two chromosomes with the high-
est quality values from the population using one of the selection methods. Some
of these methods are: Elitism Selection, Roulette Wheel Selection, Tournament
Selection, Rank Selection, and Stochastic Selection.



86 Suhail Owais, Petr Gajdoš, Václav Snášel

4.4 Crossover operator

Promising candidates, as represented by relatively better performing solutions,
are combined through a process of binary recombination referred to as crossover.
This ensures that the search process is not random but rather that it is con-
sciously directed into promising regions of the solution space. Crossover ex-
changes subparts of the selected chromosomes, where the position of the subparts
selected randomly to produce offsprings. Some of crossover methods types are:
Single Point Crossover, Two Points Crossover, Multipoint Crossover, Uniform
Crossover, and Arithmetic Crossover.

4.5 Mutation operator

New genetic material can be introduced into the population through mutation.
This increases the diversity in the population. Mutation occurs by randomly
selecting particular elements in a particular offsprings.

GA process terminated by satisfies one of terminating conditions often in-
clude:

– Fixed number of generations reached.
– Budgeting: allocated computation time/money used up.
– An individual is found that satisfies minimum criteria.
– The highest ranking individual’s fitness is reaching or has reached a plateau

such that successive iterations are not producing better results anymore.
– Manual inspection. May require start-and-stop ability.
– Combinations of the above.

5 Genetic algorithm implementation

In the this chapter we try to describe our approach to draw a Hasse diagram for
a concept lattice using genetic algorithm. There are five levels and ten concepts
(nodes) in the figure 3. In the first generation the population of a chromosomes
were generated randomly. At the beginning the number of levels is computed ac-
cording to an incremental algorithm made by Petko Valtchev. Then we compute
the level position for each node, some nodes may appear in different levels, e.g.
the concept number six could be moved one level up. Next vector (see table 2)
consists of all edges in the Hasse diagram. The numbers represent the indexes
of nodes (concepts).

From 0 0 0 5 5 8 8 6 6 9 9 7 4 2

To 6 5 9 3 4 3 9 4 2 7 2 1 1 1
Table 2. Vector of diagram edges



Usage of Genetic Algorithm for Lattice Drawing 87

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig-2: Flowchart for Genetic Algorithm 

Evaluate Fitness Functions 

Encoding generated population 

Meets 
Optimization 

Criteria? 

Selection (select parents) 

Crossover (married parents) 

Mutation (mutate offsprings) 

Stop 

R 
E 
G 
E 
N 
E 
R 
A 
T 
I 
O 
N 

Start 

Best 
individuals 

Generate Initial Population 

Yes

Fig. 2. asdadadad

Fig. 3. Hasse digram with marked levels.

5.1 Chromosome encoding

Each chromosome was encoded as a vector which consists of x and y coordi-
nates for all nodes in the graph. The coordinates will be generated randomly



88 Suhail Owais, Petr Gajdoš, Václav Snášel

for node with respect to the levels of nodes. Table 3 shows an example for such
chromosome.

X-coord. 200 200 50 250 300 270 180 200 100 70

Y-coord. 50 400 300 200 300 100 200 300 100 200
Table 3. Chromosome encoding

6 Fitness function

We are looking for more readable graph. The most important constrains we look
for the minimal number of edges’ intersections.

6.1 Selection method

The best two chromosomes will be selected depends on the minimal number
of intersections and called parents. They will be used in the other operators
crossover and mutation to produce two new offspring.

6.2 Crossover

Three types of crossover will be implemented (single point, two points and multi
points crossover) over selected parents. Following figures show examples for the
three types.

For the single point crossover (see figure 4) the one node position will be
randomly chosen. It will divide the parents’ chromosomes into two parts. Then
first offspring’s chromosome consists of the first part from the first parent and
second part from the second parent. The second offspring consists of the first
part from the second parent and the second part from the first parent.

Fig. 4. Single point crossover.

For the two points crossover (see figure 5) two nodes’ positions will be ran-
domly chosen. This will divide the parents’ chromosomes into three parts. Then



Usage of Genetic Algorithm for Lattice Drawing 89

first offspring’s chromosome consists of the first and third parts from the first
parent and second part from the second parent. The second offspring consists
of the second part from the first parent and the first and third parts from the
second parent.

Fig. 5. Two points crossover.

For the multi points crossover (see figure 6) random number n of nodes will
be chosen. Also we generate n number of nodes’ positions randomly to swap
these nodes to produce two new offspring.

Fig. 6. Multi points crossover.

6.3 Mutation

The two new offspring will be mutated randomly to change some x coordinates
depends on mutation value. For each node the random value will be selected
and if this value is less then mutation value then new random number will be
generated to define x coordinate of the node. Figure 7 shows an example. The
x coordinate of the node number 4 was mutated from the value 250 to the 220
because the random number 0.1 for this node is less then the mutation value0.2.
The Nodes number zero and one will be not mutated, because they will be placed
in the middle of the x − axes (see figure 7). Some nodes may be mutated by
change its level (y − coordinate) depends on the position of parent concept and
child concept. If there is a free level between selected concept and its parent
concept, then it can be mutated. Correspondingly, if there is a free level between
selected concept and its child concept. See figure 8.



90 Suhail Owais, Petr Gajdoš, Václav Snášel

then fitness values will be computed for the new offspring. These offspring
may be replaced by the worst chromosome in the population if its fitness values
exceed the fitness value of the worst chromosome. Now the new population is
ready for a new generation.

Fig. 7. Mutation of x-coordinates of nodes.

Fig. 8. Mutation of y-coordinate (level) of the node 6.

Also we explained how to get a good placing of nodes (concepts) in a graph
with a minimal number of intersections. In our approach the main sence of fitness
function is to obtain this number. But the function could be modified and other
criteria could be added. For example a minimal distance between nodes, a graph
symmetry or minimal sum of lengths of graph edges. But this is the point of
concrete implementation.

6.4 Termination process

The process will be terminated if any of these cases:

1. there will be a chromosome with no intersection which means the best solu-
tion,

2. after processing limited number of generations,
3. if there is no improvement over the population in limited number of gener-

ations.



Usage of Genetic Algorithm for Lattice Drawing 91

7 Conclusion

The genetic algorithms are used to solve hard problems, where the drawing of
a nice and readable Hasse diagram is one of them. We introduced one possible
way to draw it using genetic algorithm. Using different types of the crossover
operators may produce god drawing results. Moving nodes from level to level by
mutation operator may give us better results.

In our future work we will try to create an application for lattice drawing
based on our approach. The shape of the graph could be improved using other
characteristics like distances between nodes on the same level.

References

1. G. Battista, P. Eades, R. Tamassia, and I. Tollis. Algorithms for drawing graphs,
an annotated bibiliography. Computational Geometry, Theory and Applications,
4:235–282, 1994.

2. H. Fang, P. Ross, and D. Corne. Genetic algorithms for timetabling and scheduling.
http://www.asap.cs.nott.ac.uk/ASAP/ttg/resources.html, 1994.

3. B. Ganter and R. Wille. Formal Concept Analysis. Springer-Verlag Berlin Heidel-
berg, 1999.

4. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, 1989.

5. M. Melanie. An Introduction to Genetic Algorithms. A Bradford Book. MIT-Press,
1999.

6. M. Melanie and S. F. Genetic algorithms and artificial life. Santa Fe Institute,
working Paper 93-11-072, 1994.

7. S. S. J. Owais. Timetabling of lectures in the information technology college at al
al-bayt university using genetic algorithms. Master’s thesis, Al al-Bayt University,
Jordan, 2003. in Arabic.

8. H. Pohlheim. Evolutionary algorithms: Overview, methods and operators.
GEATbx version 3.5., 2004. http://www.geatbx.com/docu/index.html.

9. E. P. K. Tsang and T. Warwick. Applying genetic algorithms to constraints satis-
faction optimization problems. In Proc. Of 9th European Conf. on AI. Aiello L.C.,
1990.

10. R. L. Wainwright. Introduction to genetic algorithms theory and applications. The
Seventh Oklahoma Symposium on Artificial Intelligence, November 1993.

11. R. Wille. Lattices in data analysis: How to draw them with a computer. Algorithms
and Order, pages 33–58, 1989.




