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Abstract. In [4] we have presented a new common platform for different
types of fuzzification of a concept lattice. Now we show a pendant of the
basic theorem on clasical concept lattices for this generalization which
characterizes (complete) lattices isomorphic to this generalized concept
lattice.

1 Introduction

There are some attempts have arisen which try to fuzzify the classical crisp
Ganter-Wille’s concept lattice, i.e. to consider the fuzzy values instead of 0’s/1’s
in a matrix. One of them is the natural (and symmetric) fuzzification given by
e.g. Bělohlávek ([1]) which consider (L-)fuzzy subsets of objects and (L-)fuzzy
subsets of attributes. Another from author’s paper [4] is a ”bad boy”, be-
cause it is not symmetric: it considers fuzzy subsets of attributes but ordi-
nary/classical/crisp subsets of objects.

Our paper [4] shows a relationship between these approaches by finding cer-
tain common platform for both of them. The main idea of it is to differ between
types of the fuzziness of objects and of the fuzziness of attributes as it is used
in its special case in [3].

In this paper we formulate the extend version of the basic theorem on such
generalized concept lattice which is the generalization of above-mentioned and
we proved this added extension (the simple version of it was proved in [4]). This
extension characterizes all lattices which are isomorphic to a generalized concept
lattice.

2 A generalized fuzzy concept lattice

Now we shortly repeat basic definitions and results from [4]:
Let L be a poset, C and D be supremum-complete upper-semilattices (i.e.

there exists supX =
∨
X for each subset X of C or D). Let • : C ×D → L be

monotone and left-continuous in both their arguments, i.e.
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1a) c1 ≤ c2 implies c1 • d ≤ c2 • d for all c1, c2 ∈ C and d ∈ D.
1b) d1 ≤ d2 implies c • d1 ≤ c • d2 for all c ∈ C and d1, d2 ∈ D.
2a) If c • d ≤ � holds for d ∈ D, � ∈ L and for all c ∈ X ⊆ C, then supX • d ≤ �.
2b) If c • d ≤ � holds for c ∈ C, � ∈ L and for all d ∈ Y ⊆ D, then c • supY ≤ �.

Let A and B be non-empty sets and let R be L-fuzzy relation on their Carte-
sian product, i.e. R : A×B → L.

Define the following mapping ↗ : BD → AC:
If g : B → D then ↗(g) : A→ C is defined in the following way:

↗(g)(a) = sup{c ∈ C : (∀b ∈ B)c • g(b) ≤ R(a, b)}.

Symmetrically we define the mapping ↙ : AC → BD:
If f : A→ C then ↙(f) : B → D is defined in the following way:

↙(f)(b) = sup{d ∈ D : (∀a ∈ A)f(a) • d ≤ R(a, b)}.

We have shown in [4] that these two mappings form a Galois connection and
they are generalization of classical crisp Ganter-Wille’s approach (see [2]), fuzzy
Bělohlávek’s (or independently Pollandt’s) one (see [1], [5]) and our one-sided
fuzzy one (see [3]).

Hence we use our new mappings ↗ and ↙ for constructing a concept lattice
following the original Ganter-Wille’s method from [2].

We assume from now that C and D are complete lattices. A concept is a
pair 〈g, f〉 ∈ BD × AC s.t. ↗(g) = f and ↙(f) = g. If 〈g1, f1〉 and 〈g2, f2〉 are
concepts, we will write 〈g1, f1〉 ≤ 〈g2, f2〉 iff g1 ≤ g2 (or equivalently f1 ≥ f2).
The set of all such concepts with the order ≤ is called a (generalized) concept
lattice and denoted shortly by L.

Theorem 1 (The Basic Theorem on Generalized Concept Lattice).

1) The generalized concept lattice L is a complete lattice in which

∧
i∈I

〈gi, fi〉 =

〈∧
i∈I

gi,↗
(
↙
(∨

i∈I

fi

))〉

and ∨
i∈I

〈gi, fi〉 =

〈
↙
(
↗
(∨

i∈I

gi

))
,
∧
i∈I

fi

〉
.

2) Let moreover L have the least element 0L and 0C • d = 0L and c • 0D = 0L

for every c ∈ C and d ∈ D. Then a complete lattice V is isomorphic to L if
and only if there are mappings α : A× C → V and β : B ×D → V s.t.
1a) α is non-increasing in the second argument.
1b) β is non-decreasing in the second argument.
2a) α[A× C] is infimum-dense.
2b) β[B ×D] is supremum-dense.
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3) For every a ∈ A, b ∈ B, c ∈ C, d ∈ D

α(a, c) ≥ β(b, d) if and only if c • d ≤ R(a, b).

The proof of the part 1) is in [4], so we prove the second part now.
We will need the following singleton functions: If T is an arbitrary set and U

is a poset with the least element 0U , define ST,U
t,u : T → U in the following way:

ST,U
t,u (x) =

{
u, if x = t,
0U , elsewhere.

We show a few basic properties of these functions.

Lemma 1.
f = sup{ST,U

t,f(t) : t ∈ T}.

Proof. Let x ∈ T . Because of pointwise defined supremum of a set of functions
we have sup{ST,U

t,f(t) : t ∈ T}(x) = sup{ST,U
t,f(t)(x) : t ∈ T}. For all t �= x we have

ST,U
t,f(t)(x) = 0U , hence sup{ST,U

t,f(t)(x) : t ∈ T} = ST,U
x,f(x)(x) = f(x). So we obtain

f(x) = sup{ST,U
t,f(t) : t ∈ T}(x) for all x ∈ T , q.e.d..

Lemma 2. a) For all a ∈ A, b ∈ B, c ∈ C

↙(SA,C
a,c )(b) = sup{d ∈ D : c • d ≤ R(a, b)}.

b) For all a ∈ A, b ∈ B, d ∈ D

↗(SB,D
b,d )(a) = sup{c ∈ C : c • d ≤ R(a, b)}.

Proof. By the definition ↙(SA,C
a,c )(b) = sup{d ∈ D : (∀x ∈ A)SA,C

a,c (x) • d ≤
R(x, b)}. Because SA,C

a,c (x) • d = 0C • d = 0L for every x �= a, we obtain (∀x ∈
A)SA,C

a,c (x)•d ≤ R(x, b) iff SA,C
a,c (a)•d ≤ R(a, b), i.e. c•d ≤ R(a, b) for all d ∈ D.

But it means that {d ∈ D : (∀a ∈ A)SA,C
a,c (a) • d ≤ R(a, b)} = {d ∈ D : c • d ≤

R(a, b)} and ↙(SA,C
a,c )(b) = sup{d ∈ D : (∀x ∈ A)SA,C

a,c (x) • d ≤ R(x, b)} =
sup{d ∈ D : c • d ≤ R(a, b)}, q.e.d..

The proof of the part b) is analogous.

Firstly we prove the theorem for the case V = L: Define

αL(a, c) = 〈↙(SA,C
a,c ),↗(↙(SA,C

a,c ))〉,

βL(b, d) = 〈↙(↗(SB,D
b,d )),↗(SB,D

b,d )〉.
Obviously both results are really concepts.

Claim 1
a) αL is non-increasing in the second argument.
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b) βL is non-decreasing in the second argument.

Proof. Let c1 ≤ c2 are from C, we want to prove that αL(a, c1) ≥ αL(a, c2)
(for an arbitrary a ∈ A). It is enough to prove that ↙(SA,C

a,c1
) ≥ ↙(SA,C

a,c2
), i.e.

↙(SA,C
a,c1

)(b) ≥ ↙(SA,C
a,c2

)(b) for all b ∈ B, which (by the previous lemma) means
sup{d ∈ D : c1 • d ≤ R(a, b)} ≥ sup{d ∈ D : c2 • d ≤ R(a, b)}.

Because of monotoneity of ≤ in the first argument we have c1 • d ≤ c2 • d,
so c2 • d ≤ R(a, b) implies c1 • d ≤ R(a, b). It means that {d ∈ D : c2 • d ≤
R(a, b)} ⊆ {d ∈ D : c1 • d ≤ R(a, b)}, which implies wanted sup{d ∈ D : c2 • d ≤
R(a, b)} ≤ sup{d ∈ D : c1 • d ≤ R(a, b)}, q.e.d..

The proof of the part b) is symmetrical.

Claim 2

αL(a, c) ≥ βL(b, d) if and only if c • d ≤ R(a, b).

Proof. If c•d ≤ R(a, b), then clearly c ∈ {k ∈ C : k•d ≤ R(a, b)}. It follows that
SA,C

a,c (a) = c ≤ sup{k ∈ C : k • d ≤ R(a, b)} = ↗(SB,D
b,d )(a). For x �= a we have

obvious SA,C
a,c (x) = 0C ≤ ↗(SB,D

b,d )(x), hence SA,C
a,c ≤ ↗(SB,D

b,d ). Because of the
Galois connection between ↙ and ↗ it follows that ↙(SA,C

a,c ) ≥ ↙(↗(SB,D
b,d )),

i.e. αL(a, c) ≥ βL(b, d).
Inversely, if x ∈ A, clearly u ∈ {k ∈ C : k • d ≤ R(x, b)} iff u • d ≤ R(x, b).

Hence (using left-continuousness of • in the second argument) ↗(SB,D
b,d )(x)•d =

sup{k ∈ C : k •d ≤ R(x, b)}•d ≤ R(x, b). So (∀x ∈ A)↗(SB,D
b,d )(x)•d ≤ R(x, b),

and this implies d ∈ {m ∈ D : (∀x ∈ A)↗(SB,D
b,d )(x) • m ≤ R(x, b)}, hence

d ≤ sup{m ∈ D : (∀x ∈ A)↗(SB,D
b,d )(x) •m ≤ R(x, b)} = ↙(↗(SB,D

b,d ))(b) (by
the definition of ↗). Because αL(a, c) ≥ βL(b, d), i.e. ↙(SA,C

a,c ) ≥ ↙(↗(SB,D
b,d )),

we obtain d ≤ ↙(↗(SB,D
b,d ))(b) ≤ ↙(SA,C

a,c )(b). Because w ∈ {m ∈ D : c •m ≤
R(a, b)} iff c • w ≤ R(a, b), by left-continuousness of • in the second argument
we have c • sup{m ∈ D : c •m ≤ R(a, b)} ≤ R(a, b), i.e. (by the previous lemma)
c • ↙(SA,C

a,c )(b) ≤ R(a, b). Because of monotonity of • in the second argument
we obtain c • d ≤ c •↙(SA,C

a,c )(b) ≤ R(a, b), q.e.d..

Claim 3 Let f : A→ C and g : B → D and 〈g, f〉 be a concept.

a) 〈g, f〉 = inf{αL(a, f(a)) : a ∈ A}.
b) 〈g, f〉 = sup{βL(b, g(b)) : b ∈ B}.

Proof. Let a ∈ A. Then SA,C
a,f(a)(a) = f(a) and SA,C

a,f(a)(x) = 0C ≤ f(x) for the

other x �= a, hence SA,C
a,f(a) ≤ f . Because ↙ and ↗ form a Galois connection and

f is the intent of some concept, we obtain ↗(↙(SA,C
a,f(a))) ≤ ↗(↙(f)) = f , so

〈g, f〉 ≤ 〈↙(SA,C
a,f(a)),↗(↙(SA,C

a,f(a)))〉 = αL(a, f(a)). This is true for all a ∈ A,
so 〈g, f〉 ≤ inf{αL(a, f(a)) : a ∈ A}.
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Conversely, by the part 1) of the theorem we have inf{αL(a, f(a)) : a ∈ A} =∧
a∈A αL(a, f(a)) =

∧
a∈A〈↙(SA,C

a,f(a)),↗(↙(SA,C
a,f(a)))〉 = 〈∧a∈A↙(SA,C

a,f(a)),

↗(↙(
∨

a∈A↗(↙(SA,C
a,f(a)))))〉. On the other hand, using the property of com-

position ↙ and ↗ (following from a Galois connection between them) we have
SA,C

a,f(a) ≤ ↗(↙(SA,C
a,f(a))) = sup{↗(↙(SA,C

x,f(x))) : x ∈ A} for all a ∈ A. It means

(using lemma 1) that f = sup{SA,C
a,f(a) : a ∈ A} ≤ sup{↗(↙(SA,C

x,f(x))) : x ∈
A} ≤ ↗(↙(sup{↗(↙(SA,C

x,f(x))) : x ∈ A})) = ↗(↙(
∨

x∈A↗(↙(SA,C
x,f(x))))), i.e.

f ≤ ↗(↙(
∨

a∈A↗(↙(SA,C
a,f(a))))). Hence 〈g, f〉 ≥ inf{αL(a, f(a)) : a ∈ A},

q.e.d..
The proof of the part b) is analogous.

Claim 4 a) αL[A× C] is infimum-dense in L.
b) βL[B ×D] is supremum-dense in L.

Proof. They are obvious consequences of the previous claim.

We have proven the second part of the basic theorem for the special case
V = L. Now we will prove it for another cases.

First we assume that V is a complete lattice isomorphic to our L. Let ϕ :
L → V is a witness isomorphism. Define

α(a, c) = ϕ(αL(a, c)),

β(b, d) = ϕ(βL(b, d)).

We prove that these mapping fulfill appropriate properties:

Claim 5
a) α is non-increasing in the second argument.
b) β is non-decreasing in the second argument.

Proof. If c1 ≤ c2, we have (by the claim 1) αL(a, c1) ≥ αL(c, a2). Because ϕ is
an isomorphism, we obtain ϕ(αL(a, c1)) ≥ ϕ(αL(c, a2)), i.e. α(a, c1) ≥ α(c, a2),
q.e.d..

The proof of the part b) is analogous.

Claim 6
a) α[A× C] is infimum-dense.
b) β[B ×D] is supremum-dense.

Proof. If v ∈ V , let 〈g, f〉 ∈ L s.t. ϕ(〈g, f〉) = v (such v exists, because ϕ is
a bijection). Then inf{α(a, f(a)) : a ∈ A} = inf{ϕ(αL(a, f(a))) : a ∈ A} =
ϕ(inf{αL(a, f(a)) : a ∈ A}) (because ϕ is an isomorphism), = ϕ(〈g, f〉) (by
claim 2) = v. Hence we can express an arbitrary element of V as the infimum
of some subset of α[A× C], i.e. α[A× C] is infimum-dense, q.e.d..

The fact that β[B ×D] is supremum-dense can be proven analogously.
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Claim 7 α(a, c) ≥ β(b, d) if and only if c • d ≤ R(a, b).

Proof. α(a, c) ≥ β(b, d) i.e. ϕ(αL(a, c)) ≥ ϕ(βL(b, d)) iff αL(a, c) ≥ βL(b, d)
(because ϕ is an isomorphism), iff c • d ≤ R(a, b) (we have proven it above),
q.e.d..

Now we have proven the first direction, we are going to show the opposite
one. Let α and β have appropriate properties.

Claim 8 a) For all a ∈ A, c ∈ C and v ∈ V

α(a, c) ≥ v iff (∀b ∈ B)(∀d ∈ D)(β(b, d) ≤ v → α(a, c) ≥ β(b, d)).

b) For all b ∈ B, d ∈ D and v ∈ V

β(b, d) ≤ v iff (∀a ∈ A)(∀c ∈ C)(α(a, c) ≥ v → α(a, c) ≥ β(b, d)).

Proof. If α(a, c) ≥ v, then clearly β(b, d) ≤ v implies α(a, c) ≥ β(b, d) what
means c • d ≤ R(a, b) by assumption on α and β.

Conversely, using supremum-density of β[B×D] our v can be expressed in a
form v = sup{β(bi, di) : i ∈ I} for some set of pairs {〈bi, di〉 : i ∈ I}. This implies
that β(bi, di) ≤ v for all i ∈ I, hence (by our assumption) α(a, c) ≥ β(bi, di) for
all i ∈ I. But it means that α(a, c) ≥ sup{β(bi, di) : i ∈ I} = v, q.e.d..

The proof of the part b) is symmetrical.

Now we can define the following function ϕ : L → V in the following way:

ϕ(〈g, f〉) = inf{α(a, f(a)) : a ∈ A}

and show that it is a wanted isomorphism.

Claim 9 ϕ is order-preserving.

Proof. 〈g1, f1〉 ≤ 〈g2, f2〉 iff f1 ≥ f2 iff f1(a) ≥ f2(a) for all a ∈ A. Because α is
non-increasing in the second argument, it implies α(a, f1(a)) ≤ α(a, f2(a)). So we
have ϕ(〈g1, f1〉) = inf{α(x, f1(x)) : x ∈ A} ≤ α(a, f2(a)) for all a ∈ A and (using
the definition of an infimum) ϕ(〈g1, f1〉) ≤ inf{α(a, f2(a)) : a ∈ A} = ϕ(〈g2, f2〉),
q.e.d..

Now we define the function ψ : L → V by

ψ(v) = 〈gv, fv〉 such that

fv(a) = sup{c ∈ C : α(a, c) ≥ v},
gv(b) = sup{d ∈ D : β(b, d) ≤ v}

and show that ψ = ϕ−1.
First we prove that 〈gv, fv〉 is really concept:
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Claim 10 a) ↗(gv) = fv.
b) ↙(fv) = gv.

Proof. α(a, c) ≥ v is (by previous lemma) equivalent to (∀b ∈ B)(∀d ∈ D)(β(b, d) ≤
v → α(a, c) ≥ β(b, d)) and because of the relation between α, β and R, this is
equivalent to (∀b ∈ B)(∀d ∈ D)(β(b, d) ≤ v → c • d ≤ R(a, b)). This can be
replaced equivalently by (∀b ∈ B)c • sup{d ∈ D : β(b, d) ≤ v} ≤ R(a, b) (one
implication follows from the definition of a supremum, the second one from
left-continuity of •), i.e. (∀b ∈ B)c • gv(b) ≤ R(a, b). This gives the equality
sup{c ∈ C : α(a, c) ≥ v} = sup{c ∈ C : (∀b ∈ B)c • gv(b) ≤ R(a, b)}, i.e.
fv(a) = ↗(gv)(a) (by the definitions of fv and ↗) for all a ∈ A. It means that
fv = ↗(gv), q.e.d..

The proof of the part b) is symmetrical.

Claim 11 ψ is order-preserving.

Proof. If v1 ≤ v2 then clearly α(a, c) ≥ v2 implies α(a, c) ≥ v1. It follows that
{c ∈ C : α(a, c) ≥ v2} ⊆ {c ∈ C : α(a, c) ≥ v1}, i.e. fv2(a) = sup{c ∈ C :
α(a, c) ≥ v2} ≤ sup{c ∈ C : α(a, c) ≥ v1} = fv1(a) for all a ∈ A. This means
that fv1 ≥ fv2 , i.e. ψ(v1) = 〈gv1 , fv1〉 ≤ 〈gv2 , fv2〉 = ψ(v2), q.e.d..

Claim 12 ϕ(ψ(v)) = v.

Proof. Using supremum-density of β[B × D] our v can be expressed in a form
v = sup{β(bi, di) : i ∈ I} for some set of pairs {〈bi, di〉 : i ∈ I}. This implies
that β(bi, di) ≤ v for all i ∈ I. If a ∈ A and c ∈ C are such that α(a, c) ≥ v,
we have β(bi, di) ≤ α(a, c) for all i ∈ I. Hence c • di ≤ R(a, bi), and using the
left-continuousness of • in the first argument we obtain sup{c ∈ C : α(a, c) ≤
v}•di ≤ R(a, bi), i.e. (by the definition of fv) fv(a)•di ≤ R(a, bi) for all i ∈ I and
a ∈ A. But it means that α(a, fv(a)) ≥ β(bi, di) and this implies α(a, fv(a)) ≥
sup{β(bi, di) : i ∈ I} = v. Hence ψ(〈gv, fv〉) = inf{α(a, fv(a)) : a ∈ A} ≥ v.

Conversely, using supremum-density of α[A × C] our v can be expressed
in a form v = inf{α(ai, ci) : i ∈ I} for some set of pairs {〈ai, ci〉 : i ∈ I}.
Clearly α(ai, ci) ≥ v, therefore ci ∈ {c ∈ C : α(ai, c) ≥ v}, which implies
ci ≤ sup{c ∈ C : α(ai, c) ≥ v} = fv(ai), for all i ∈ I. Because α is non-
increasing in the second argument, we obtain α(ai, ci) ≥ α(ai, fv(ai)) for all
i ∈ I. And because α(ai, fv(ai)) ∈ {α(a, fv(a)) : a ∈ A}, we have α(ai, ci) ≥
α(ai, fv(ai)) ≥ inf{α(a, fv(a)) : a ∈ A} = ψ(〈gv, fv〉), for all i ∈ I. This implies
v = inf{α(ai, ci) : i ∈ I} ≥ ψ(〈gv, fv〉), q.e.d..

Claim 13 ψ(ϕ(〈g, f〉)) = 〈g, f〉.
Proof. Let v = ϕ(〈g, f〉) = inf{α(a, f(a)) : a ∈ A}, it is enough to prove that
g = gv.

Because (∀a ∈ A)(f(a) • d ≤ R(a, b)) iff (∀a ∈ A)(β(b, d) ≤ α(a, f(a))) (it is
a property of α and β), and this is (by the definition of a infimum) equivalent
to β(b, d) ≤ inf{α(a, f(a)) : a ∈ A} = v, we obtain {d ∈ D : (∀a ∈ A)f(a) • d ≤
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R(a, b)} = {d ∈ D : β(b, d) ≤ v}, which implies (using the definitions of ↙ and
gv) ↙(f)(b) = sup{d ∈ D : (∀a ∈ A)f(a) • d ≤ R(a, b)} = sup{d ∈ D : β(b, d) ≤
v} = gv(b). It is true for all b ∈ B, so g = ↙(f) = gv, q.e.d..

To conclude, we prove that both ϕ and ψ are order-preserving and both ϕ◦ψ
and ψ ◦ϕ are identities. All this means that really ψ = ϕ−1 and both ϕ : V → L
and psi : L → V are isomorphisms. Quod erat demonstrandum.

As a bonus we prove next property of our mappings:

Claim 14 a)
α(a, sup{ci : i ∈ I}) = inf{α(a, ci) : i ∈ I}.

b)
β(b, sup{di : i ∈ I}) = sup{α(b, di) : i ∈ I}.

Proof. β[B×D] is supremum-dense, so α(a, sup{ci : i ∈ I} = sup{β(bj , dj) : j ∈
J} for some {〈bj , dj〉 : j ∈ J}. This implies α(a, sup{ci : i ∈ I} ≥ β(bj , dj), i.e.
(by the definition) sup{ci : i ∈ I} • dj ≤ R(a, bj) for all j ∈ J . It follows that
ci • dj ≤ R(a, bj), i.e. α(a, ci) ≥ β(bj , dj) for all i ∈ I, j ∈ J . By the definitions
of a infimum and a supremum we obtain inf{α(a, ci) : i ∈ I} ≥ β(bj , dj) and
inf{α(a, ci) : i ∈ I} ≥ sup{β(bj , dj) : j ∈ J} = α(a, sup{ci : i ∈ I}.

Conversely again from the supremum-density of β[B×D], we have inf{α(a, ci) :
i ∈ I} = sup{β(bj , dj) : j ∈ J} for some {〈bj , dj〉 : j ∈ J}. It follows that
α(a, ci) ≥ sup{β(bj , dj) : j ∈ J} for all j ∈ J and α(a, ci) ≥ β(bj , dj), i.e.
ci • dj ≤ R(a, bj) for all i ∈ I, j ∈ J . Again, it is equivalent sup{ci : i ∈
I} • dj ≤ R(a, bj), i.e. α(a, sup{ci : i ∈ I}) ≥ β(bj , dj) for all j ∈ J , hence
α(a, sup{ci : i ∈ I}) ≥ sup{β(bj , dj) : j ∈ J} = inf{α(a, ci) : i ∈ I}, q.e.d..

The proof of the part b) is symmetrical, we use the infinum-density of the
set α[A× C].

Yet one note on an asymmetry in the definition of ϕ. If we define the function
ϕ′ : L → V in the following way (symmetrically to ϕ):

ϕ′(〈g, f〉) = sup{β(b, g(b)) : b ∈ B},
it can be proven (analogously to the claim 12) that ϕ′(ψ(v)) = v. So for arbitrary
concept 〈g, f〉 we take v = ψ−1(〈g, f〉) and we obtain ϕ′(〈g, f〉) = ϕ′(ψ(v)) =
v = ϕ(ψ(v)) = ϕ(〈g, f〉), i.e. ϕ′ = ϕ. Hence our asymmetry in the definition of
ϕ is only seeming and

inf{α(a, f(a)) : a ∈ A} = sup{β(b, g(b)) : b ∈ B}.

3 Conclusions

In this paper we prove the extended version of the basic theorem on a generalized
concept lattice, which is a common platform for till now known fuzzifications of a
classical crisp concept lattice. The main idea of it is to use two different complete
lattices, one for objects and maybe another for attributes.
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